Advertisement

Clustering Local Tourism Systems by Threshold Acceptance

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9028)

Abstract

Despite the importance of tourism as a leading industry in the development of a country’s economy, there is a lack of criteria and methodologies for the detection, promotion and governance of local tourism systems. We propose a quantitative approach for the detection of local tourism systems that are optimal with respect to geographical, economic, and demographical criteria. To this end, we formulate the issue as an optimization problem, and we solve it by means of Threshold Acceptance, a meta-heuristic algorithm which does not require us to predefine the number of clusters and also does not require all geographic areas to belong to a cluster.

Keywords

Threshold Accept Territorial Unit Tourist Flow Rural Tourism Threshold Acceptance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gormsen, E.: The impact of tourism on coastal areas. GeoJournal 42(1), 39–54 (1997)CrossRefGoogle Scholar
  2. 2.
    Ritchie, J., Crouch, G.: The Competitive Destination: A Sustainable Tourism Perspective. CABI Publishing Series, CABI Pub, Cambridge (2003)CrossRefGoogle Scholar
  3. 3.
    Butler, R.: The Tourism Area Life Cycle. Aspects of Tourism, vol. 1. Channel View Publications, Clevedon (2006)Google Scholar
  4. 4.
    Hawkins, D., Mann, S.: The world bank’s role in tourism development. Ann. Tourism Res. 34(2), 348–363 (2007)CrossRefGoogle Scholar
  5. 5.
    Macbeth, J.: Towards an ethics platform for tourism. Ann. Tourism Res. 32(4), 962–984 (2005)CrossRefGoogle Scholar
  6. 6.
    Jackson, J., Murphy, P.: Clusters in regional tourism an Australian case. Ann. Tourism Res. 33(4), 1018–1035 (2006)CrossRefGoogle Scholar
  7. 7.
    Leask, A.: Progress in visitor attraction research: towards more effective management. Tourism Manage. 31(2), 155–166 (2010)CrossRefGoogle Scholar
  8. 8.
    Lee, S., Choi, J., Yoo, S., Oh, Y.: Evaluating spatial centrality for integrated tourism management in rural areas using GIS and network analysis. Tourism Manage. 34, 14–24 (2013)CrossRefGoogle Scholar
  9. 9.
    Sim, I.: A study on the establishment of tourism zone and development strategic. Korean Acad. Soc. Cult. Tourism 4, 199–223 (2002)Google Scholar
  10. 10.
    Porter, M.: On Competition. Harvard Business School Publishing, Boston (1998)Google Scholar
  11. 11.
    Brenner, T., Gildner, A.: The long-term implications of local industrial clusters. Eur. Plann. Stud. 14(9), 1315–1328 (2006)CrossRefGoogle Scholar
  12. 12.
    Di Tollo, G., Tanev, S., De March, D., Ma, Z.: Neural networks to model the innovativeness perception of co-creative firms. Expert Syst. Appl. 39(16), 12719–12726 (2012)CrossRefGoogle Scholar
  13. 13.
    Brandenburger, A.: Co-opetition/Adam M. Brandenburger and Barry J. Nalebuff, 1st edn. Doubleday, New York (1996)Google Scholar
  14. 14.
    Yang, Y.: Agglomeration density and tourism development in China: an empirical research based on dynamic panel data model. Tourism Manage. 33(6), 1347–1359 (2012)CrossRefGoogle Scholar
  15. 15.
    Yabuta, M., Scott, N.: Dynamic properties of a tourism destination network. Tourism Anal. 16(4), 493–498 (2011)CrossRefGoogle Scholar
  16. 16.
    Yabuta, M., Scott, N.: A theoretical framework of the dynamic property of the tourism destination network. Technical report, the University of Queensland (2010)Google Scholar
  17. 17.
    Stansfield, C.: Atlantic city and the resort cycle background to the legalization of gambling. Ann. Tourism Res. 5(2), 238–251 (1978)CrossRefGoogle Scholar
  18. 18.
    Butler, R.: The concept of a tourist area cycle of evolution: implications for management of resources. Can. Geogr. Le Gographe Can. 24(1), 5–12 (1980)CrossRefGoogle Scholar
  19. 19.
    Hwang, Y., Fesenmaier, D.: Multidestination pleasure travel patterns: empirical evidence from the American travel survey. J. Travel Res. 42(2), 166–171 (2003)CrossRefGoogle Scholar
  20. 20.
    Jin, X., Weber, K., Bauer, T.: Impact of clusters on exhibition destination attractiveness: evidence from mainland China. Tourism Manage. 33(6), 1429–1439 (2012)CrossRefGoogle Scholar
  21. 21.
    Enright, M.: Regional clusters: what we know and what we should know. In: Brcker, J., Dohse, D., Soltwedel, R. (eds.) Innovation Clusters and Interregional Competition. Advances in Spatial Science, pp. 99–129. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Pearce, D., Tan, R., Schott, C.: Distribution channels in international markets: a comparative analysis of the distribution of new Zealand tourism in Australia, great Britain and the USA. Curr. Issues Tourism 10(1), 33–60 (2007)CrossRefGoogle Scholar
  23. 23.
    Sakai, T., Tamura, K., Kitakami, H.: Density-based adaptive spatial clustering algorithm for identifying local high-density areas in georeferenced documents. In: 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 513–518, October 2014Google Scholar
  24. 24.
    Sakai, T., Tamura, K., Kitakami, H.: A new density-based spatial clustering algorithm for extracting attractive local regions in georeferenced documents. In: 2014 Proceedings of the International MultiConference of Engineers and Computer Scientists, pp. 360–365 (2014)Google Scholar
  25. 25.
    Cracolici, M., Nijkamp, P.: The attractiveness and competitiveness of tourist destinations: a study of southern italian regions. Tourism Manage. 30(3), 336–344 (2009)CrossRefGoogle Scholar
  26. 26.
    Ryan, C.: The Tourist Experience. Continuum (2002)Google Scholar
  27. 27.
    Regione Siciliana: Criteri e modalità per il riconoscimento dei distretti turistici. Gazzetta Ufficiale della Regione Siciliana (2010)Google Scholar
  28. 28.
    Dueck, G., Scheuer, T.: Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. J. Comput. Phys. 90(1), 161–175 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Moscato, P., Fontanari, J.: Stochastic versus deterministic update in simulated annealing. Phys. Lett. A 146(4), 204–208 (1990)CrossRefGoogle Scholar
  30. 30.
    Gilli, M., Schumann, E.: Optimal enough? J. Heuristics 17(4), 373–387 (2011)CrossRefGoogle Scholar
  31. 31.
    Gilli, M., Winker, P.: Heuristic optimization methods in econometrics. In: Belsley, D.A., Kontoghiorghes, E. (eds.) Handbook of Computational Econometrics. Wiley, Chichester (2009)Google Scholar
  32. 32.
    Gilli, M., Maringer, D., Schumann, E.: Numerical Methods and Optimization in Finance. Academic Press, London (2011). ISBN 978-0-12-375662-6zbMATHGoogle Scholar
  33. 33.
    Istat: Primo Repertorio Statistico dei Comuni della Sicilia. Sistema Statistico Nazionale (2008)Google Scholar
  34. 34.
    Gusfield, D.: Partition-distance: a problem and class of perfect graphs arising in clustering. Inf. Process. Lett. 82(3), 159–164 (2002)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Dipartimento di Scienze Economiche, Aziendali e StatisticheUniversity of PalermoPalermoItaly
  2. 2.Dipartimento di ManagementUniversitá Ca’ FoscariVeniceItaly

Personalised recommendations