Abstract
In a climate constrained future, hybrid energy-economy model coupling gives additional insight into interregional competition, trade, industrial delocalisation and overall macroeconomic consequences of decarbonising the energy system. Decarbonising the energy system is critical in mitigating climate change. This chapter summarises modelling methodologies developed in the ETSAP community to assess economic impacts of decarbonising energy systems at a national level. The preceding chapter focuses on a global perspective. The modelling studies outlined here show that burden sharing rules and national revenue recycling schemes for carbon tax are critical for the long-term viability of economic growth and equitable engagement on combating climate change. Traditional computable general equilibrium models and energy systems models solved in isolation can misrepresent the long run carbon cost and underestimate the demand response caused by technological paradigm shifts in a decarbonised energy system. The approaches outlined within have guided the first evidence based decarbonisation legislation and continue to provide additional insights as increased sectoral disaggregation in hybrid modelling approaches is achieved.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
RE includes: centralised solar PV, solar thermal, wind, domestic and imported hydro, and biomass.
- 2.
The RegPol project is financed by the Norwegian Research Council. Collaborative research partners are SINTEF Technology and society, NTNU and IFE.
References
Allan G, Lecca P, McGregor P et al (2012) The impact of the introduction of a carbon tax for Scotland. University of Strathclyde, Glasgow
Allan G, McGregor PG, Swales JK, Turner K (2007) Impact of alternative electricity generation technologies on the Scottish economy: An illustrative input-output analysis. Proc Inst Mech Eng Part J Power Energy 221:243–254. doi:10.1243/09576509JPE301
Arrow KJ, Debreu G (1954) Existence of an equilibrium for a competitive economy. Econometrica 22:265–290. doi:10.2307/1907353
Bataille C, Jaccard M, Nyboer J, Rivers N (2006) Towards general equilibrium in a technology-rich model with empirically estimated behavioral parameters. Energy J 93–112
BERR (2007) Energy white paper: meeting the energy challenge. Department of Business Enterprise and Regulatory Reform, London
Capros P, Georgakopoulos T, Van Regemorter D et al (1997) The GEM-E3 general equilibrium model for the European Union. J Econ Financ Model 4:51–160
Capros P, Paroussos L, Fragkos P et al (2014) European decarbonisation pathways under alternative technological and policy choices: a multi-model analysis. Energy Strategy Rev 2:231–245. doi:10.1016/j.esr.2013.12.007
DEFRA (2007) MARKAL MACRO analysis of long run costs of climate change mitigation targets. Department of Environment, Food and Rural Affairs, London
FES (2003) Options for a low carbon future—phase 2. Future Energy Solutions (part of AEA Technology plc), London
Fortes P, Pereira R, Pereira A, Seixas J (2014) Integrated technological-economic modeling platform for energy and climate policy analysis. Energy 73:716–730. doi:10.1016/j.energy.2014.06.075
Fortes P, Simões S, Seixas J et al (2013) Top-down and bottom-up modelling to support low-carbon scenarios: climate policy implications. Clim Policy 13:285–304. doi:10.1080/14693062.2013.768919
Huntington HG, Weyant JP, Sweeney JL (1982) Modeling for insights, not numbers: the experiences of the energy modeling forum. Omega 10:449–462. doi:10.1016/0305-0483(82)90002-0
Jebaraj S, Iniyan S (2006) A review of energy models. Renew Sustain Energy Rev 10:281–311. doi:10.1016/j.rser.2004.09.004
Krook Riekkola A, Ahlgren EO, Söderholm P (2011) Ancillary benefits of climate policy in a small open economy: the case of Sweden. Energy Policy 39:4985–4998. doi:10.1016/j.enpol.2011.06.015
Kypreos S (1996) The MARKAL-MACRO model and the climate change. Paul Scherrer Institut (PSI), Villigen
Kypreos S, Lehtila A (2013) TIMES-MACRO: decomposition into hard-linked LP and NLP problems. IEA-ETSAP
Labriet M, Drouet L, Vielle M, Haurie A, Kanudia A, Loulou R (2015) Assessment of the effectiveness of global climate policies using coupled bottom-up and top-down models. Les Cahiers du GERAD, G-2010-30 revised in January 2015, Montreal, Canada, p 22
Laitner JA, DeCanio SJ, Koomey JG, Sanstad AH (2003) Room for improvement: increasing the value of energy modeling for policy analysis. Util Policy 11:87–94. doi:10.1016/S0957-1787(03)00020-1
Loulou R, Labriet M (2008) ETSAP-TIAM: the TIMES integrated assessment model part I: model structure. Comput Manag Sci 5:7–40. doi:10.1007/s10287-007-0046-z
Loulou R, Remme U, Kanudia A et al (2005) Documentation for the TIMES model
Manne A, Mendelsohn R, Richels R (1995) MERGE: a model for evaluating regional and global effects of GHG reduction policies. Energy Policy 23:17–34. doi:10.1016/0301-4215(95)90763-W
Messner S, Schrattenholzer L (2000) MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively. Energy 25:267–282. doi:10.1016/S0360-5442(99)00063-8
Negishi T (1972) General equilibrium theory and international trade. North-Holland Pub. Co, Amsterdam
Nordhaus WD (2007) A review of the Stern review on the economics of climate change. J Econ Lit 45:686–702. doi:10.1257/jel.45.3.686
Östblom G, Berg C (2006) The EMEC model: version 2.0
Pearce D (2003) The social cost of carbon and its policy implications. Oxf Rev Econ Policy 19:362–384
Pilavachi PA, Dalamaga T, Rossetti di Valdalbero D, Guilmot J-F (2008) Ex-post evaluation of European energy models. Energy Policy 36:1726–1735. doi:10.1016/j.enpol.2008.01.028
RCEP (2000) Energy—the changing climate. Royal Commission on Environmental Pollution, London
Remme U, Blesl M (2006) Documentation of the TIMES-MACRO model. ETSAP
Rutherford TF (1992) Sequential joint maximization. Boulder, Colorado
Simoes S, Nijs W, Ruiz P et al (2013) The JRC-EU-TIMES model assessing the long-term role of the SET plan energy technologies. Publications Office, Luxembourg
Stern N (2006) The economics of climate change: the Stern review. HM Treasury, London
Strachan N, Kannan R (2008) Hybrid modelling of long-term carbon reduction scenarios for the UK. Energy Econ 30:2947–2963. doi:10.1016/j.eneco.2008.04.009
Strachan N, Pye S, Kannan R (2009) The iterative contribution and relevance of modelling to UK energy policy. Energy Policy 37:850–860. doi:10.1016/j.enpol.2008.09.096
Winebrake JJ, Sakva D (2006) An evaluation of errors in US energy forecasts: 1982–2003. Energy Policy 34:3475–3483. doi:10.1016/j.enpol.2005.07.018
Winkler H (2007) Long term mitigation scenarios. Technical Report Energy Research Centre for Department of Environment Affairs and Tourism, Pretoria, South Africa
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Glynn, J. et al. (2015). Economic Impacts of Future Changes in the Energy System—National Perspectives. In: Giannakidis, G., Labriet, M., Ó Gallachóir, B., Tosato, G. (eds) Informing Energy and Climate Policies Using Energy Systems Models. Lecture Notes in Energy, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-16540-0_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-16540-0_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16539-4
Online ISBN: 978-3-319-16540-0
eBook Packages: EnergyEnergy (R0)