Skip to main content

Economic Impacts of Future Changes in the Energy System—National Perspectives

  • Chapter
  • First Online:
Informing Energy and Climate Policies Using Energy Systems Models

Abstract

In a climate constrained future, hybrid energy-economy model coupling gives additional insight into interregional competition, trade, industrial delocalisation and overall macroeconomic consequences of decarbonising the energy system. Decarbonising the energy system is critical in mitigating climate change. This chapter summarises modelling methodologies developed in the ETSAP community to assess economic impacts of decarbonising energy systems at a national level. The preceding chapter focuses on a global perspective. The modelling studies outlined here show that burden sharing rules and national revenue recycling schemes for carbon tax are critical for the long-term viability of economic growth and equitable engagement on combating climate change. Traditional computable general equilibrium models and energy systems models solved in isolation can misrepresent the long run carbon cost and underestimate the demand response caused by technological paradigm shifts in a decarbonised energy system. The approaches outlined within have guided the first evidence based decarbonisation legislation and continue to provide additional insights as increased sectoral disaggregation in hybrid modelling approaches is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    RE includes: centralised solar PV, solar thermal, wind, domestic and imported hydro, and biomass.

  2. 2.

    The RegPol project is financed by the Norwegian Research Council. Collaborative research partners are SINTEF Technology and society, NTNU and IFE.

References

  • Allan G, Lecca P, McGregor P et al (2012) The impact of the introduction of a carbon tax for Scotland. University of Strathclyde, Glasgow

    Google Scholar 

  • Allan G, McGregor PG, Swales JK, Turner K (2007) Impact of alternative electricity generation technologies on the Scottish economy: An illustrative input-output analysis. Proc Inst Mech Eng Part J Power Energy 221:243–254. doi:10.1243/09576509JPE301

    Article  Google Scholar 

  • Arrow KJ, Debreu G (1954) Existence of an equilibrium for a competitive economy. Econometrica 22:265–290. doi:10.2307/1907353

    Article  MATH  MathSciNet  Google Scholar 

  • Bataille C, Jaccard M, Nyboer J, Rivers N (2006) Towards general equilibrium in a technology-rich model with empirically estimated behavioral parameters. Energy J 93–112

    Google Scholar 

  • BERR (2007) Energy white paper: meeting the energy challenge. Department of Business Enterprise and Regulatory Reform, London

    Google Scholar 

  • Capros P, Georgakopoulos T, Van Regemorter D et al (1997) The GEM-E3 general equilibrium model for the European Union. J Econ Financ Model 4:51–160

    Google Scholar 

  • Capros P, Paroussos L, Fragkos P et al (2014) European decarbonisation pathways under alternative technological and policy choices: a multi-model analysis. Energy Strategy Rev 2:231–245. doi:10.1016/j.esr.2013.12.007

    Article  Google Scholar 

  • DEFRA (2007) MARKAL MACRO analysis of long run costs of climate change mitigation targets. Department of Environment, Food and Rural Affairs, London

    Google Scholar 

  • FES (2003) Options for a low carbon future—phase 2. Future Energy Solutions (part of AEA Technology plc), London

    Google Scholar 

  • Fortes P, Pereira R, Pereira A, Seixas J (2014) Integrated technological-economic modeling platform for energy and climate policy analysis. Energy 73:716–730. doi:10.1016/j.energy.2014.06.075

    Article  Google Scholar 

  • Fortes P, Simões S, Seixas J et al (2013) Top-down and bottom-up modelling to support low-carbon scenarios: climate policy implications. Clim Policy 13:285–304. doi:10.1080/14693062.2013.768919

    Article  Google Scholar 

  • Huntington HG, Weyant JP, Sweeney JL (1982) Modeling for insights, not numbers: the experiences of the energy modeling forum. Omega 10:449–462. doi:10.1016/0305-0483(82)90002-0

    Article  Google Scholar 

  • Jebaraj S, Iniyan S (2006) A review of energy models. Renew Sustain Energy Rev 10:281–311. doi:10.1016/j.rser.2004.09.004

    Article  Google Scholar 

  • Krook Riekkola A, Ahlgren EO, Söderholm P (2011) Ancillary benefits of climate policy in a small open economy: the case of Sweden. Energy Policy 39:4985–4998. doi:10.1016/j.enpol.2011.06.015

    Article  Google Scholar 

  • Kypreos S (1996) The MARKAL-MACRO model and the climate change. Paul Scherrer Institut (PSI), Villigen

    Google Scholar 

  • Kypreos S, Lehtila A (2013) TIMES-MACRO: decomposition into hard-linked LP and NLP problems. IEA-ETSAP

    Google Scholar 

  • Labriet M, Drouet L, Vielle M, Haurie A, Kanudia A, Loulou R (2015) Assessment of the effectiveness of global climate policies using coupled bottom-up and top-down models. Les Cahiers du GERAD, G-2010-30 revised in January 2015, Montreal, Canada, p 22

    Google Scholar 

  • Laitner JA, DeCanio SJ, Koomey JG, Sanstad AH (2003) Room for improvement: increasing the value of energy modeling for policy analysis. Util Policy 11:87–94. doi:10.1016/S0957-1787(03)00020-1

    Article  Google Scholar 

  • Loulou R, Labriet M (2008) ETSAP-TIAM: the TIMES integrated assessment model part I: model structure. Comput Manag Sci 5:7–40. doi:10.1007/s10287-007-0046-z

    Article  MATH  MathSciNet  Google Scholar 

  • Loulou R, Remme U, Kanudia A et al (2005) Documentation for the TIMES model

    Google Scholar 

  • Manne A, Mendelsohn R, Richels R (1995) MERGE: a model for evaluating regional and global effects of GHG reduction policies. Energy Policy 23:17–34. doi:10.1016/0301-4215(95)90763-W

    Article  Google Scholar 

  • Messner S, Schrattenholzer L (2000) MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively. Energy 25:267–282. doi:10.1016/S0360-5442(99)00063-8

    Article  Google Scholar 

  • Negishi T (1972) General equilibrium theory and international trade. North-Holland Pub. Co, Amsterdam

    MATH  Google Scholar 

  • Nordhaus WD (2007) A review of the Stern review on the economics of climate change. J Econ Lit 45:686–702. doi:10.1257/jel.45.3.686

    Article  Google Scholar 

  • Östblom G, Berg C (2006) The EMEC model: version 2.0

    Google Scholar 

  • Pearce D (2003) The social cost of carbon and its policy implications. Oxf Rev Econ Policy 19:362–384

    Article  Google Scholar 

  • Pilavachi PA, Dalamaga T, Rossetti di Valdalbero D, Guilmot J-F (2008) Ex-post evaluation of European energy models. Energy Policy 36:1726–1735. doi:10.1016/j.enpol.2008.01.028

    Article  Google Scholar 

  • RCEP (2000) Energy—the changing climate. Royal Commission on Environmental Pollution, London

    Google Scholar 

  • Remme U, Blesl M (2006) Documentation of the TIMES-MACRO model. ETSAP

    Google Scholar 

  • Rutherford TF (1992) Sequential joint maximization. Boulder, Colorado

    Google Scholar 

  • Simoes S, Nijs W, Ruiz P et al (2013) The JRC-EU-TIMES model assessing the long-term role of the SET plan energy technologies. Publications Office, Luxembourg

    Google Scholar 

  • Stern N (2006) The economics of climate change: the Stern review. HM Treasury, London

    Google Scholar 

  • Strachan N, Kannan R (2008) Hybrid modelling of long-term carbon reduction scenarios for the UK. Energy Econ 30:2947–2963. doi:10.1016/j.eneco.2008.04.009

    Article  Google Scholar 

  • Strachan N, Pye S, Kannan R (2009) The iterative contribution and relevance of modelling to UK energy policy. Energy Policy 37:850–860. doi:10.1016/j.enpol.2008.09.096

    Article  Google Scholar 

  • Winebrake JJ, Sakva D (2006) An evaluation of errors in US energy forecasts: 1982–2003. Energy Policy 34:3475–3483. doi:10.1016/j.enpol.2005.07.018

    Article  Google Scholar 

  • Winkler H (2007) Long term mitigation scenarios. Technical Report Energy Research Centre for Department of Environment Affairs and Tourism, Pretoria, South Africa

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Glynn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glynn, J. et al. (2015). Economic Impacts of Future Changes in the Energy System—National Perspectives. In: Giannakidis, G., Labriet, M., Ó Gallachóir, B., Tosato, G. (eds) Informing Energy and Climate Policies Using Energy Systems Models. Lecture Notes in Energy, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-16540-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16540-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16539-4

  • Online ISBN: 978-3-319-16540-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics