Abstract
In a climate constrained future, hybrid energy-economy model coupling gives additional insight into interregional competition, trade, industrial delocalisation and overall macroeconomic consequences of decarbonising the energy system. Decarbonising the energy system is critical in mitigating climate change. This chapter summarises modelling methodologies developed in the ETSAP community to assess economic impacts of decarbonising energy systems at a global level. The next chapter of this book focuses on a national perspective. The range of economic impacts is regionally dependent upon the stage of economic development, the level of industrialisation, energy intensity of exports, and competition effects due to rates of relative decarbonisation. Developed nation’s decarbonisation targets are estimated to result in a manageable GDP loss in the region of 2 % by 2050. Energy intensive export driven developing countries such as China and India, and fossil fuel exporting nations can expect significantly higher GDP loss of up to 5 % GDP per year by mid-century.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
MARKAL—MARKet ALocation model.
- 2.
TIMES—The Integrated MARKAL-Efom System.
- 3.
- 4.
In the modelling approach applied in this study the carbon tax revenues has been recycled to households.
References
Arrow KJ, Debreu G (1954) Existence of an equilibrium for a competitive economy. Econometrica 22:265–290. doi:10.2307/1907353
Assoumou E, Maïzi N (2011) Carbon value dynamics for France: a key driver to support mitigation pledges at country scale. Energy Policy 39:4325–4336. doi:10.1016/j.enpol.2011.04.050
Ayres RU, van den Bergh JCJM, Lindenberger D, Warr B (2013) The underestimated contribution of energy to economic growth. Struct Change Econ Dyn 27:79–88. doi:10.1016/j.strueco.2013.07.004
Bataille C, Jaccard M, Nyboer J, Rivers N (2006) Towards general equilibrium in a technology-rich model with empirically estimated behavioral parameters. Energy J Special Issue 2 (Hybrid Modeling):93–112
Benes J, Chauvet M, Kamenik O et al (2012) The future of oil: Geology versus technology. International Monetary Fund, Washington, USA
Bernard A, Vielle M (2008) GEMINI-E3, a general equilibrium model of international–national interactions between economy, energy and the environment. Comput Manag Sci 5:173–206. doi:10.1007/s10287-007-0047-y
Berndt ER, Wood DO (1975) Technology, prices, and the derived demand for energy. Rev Econ Stat 57:259–268. doi:10.2307/1923910
Böhringer C (1998) The synthesis of bottom-up and top-down in energy policy modeling. Energy Econ 20:233–248. doi:10.1016/S0140-9883(97)00015-7
Böhringer C, Rutherford TF (2008) Combining bottom-up and top-down. Energy Econ 30:574–596. doi:10.1016/j.eneco.2007.03.004
Böhringer C, Rutherford TF (2009) Integrated assessment of energy policies: decomposing top-down and bottom-up. J Econ Dyn Control 33:1648–1661. doi:10.1016/j.jedc.2008.12.007
Bosetti V, Carraro C, Galeotti M et al (2006) WITCH a world induced technical change hybrid model. Energy J 27:13–37
Bouckaert S, Selosse S, Dubreuil A, Assoumou E, Maïzi N (2011) Analyzing water supply in future energy systems using the TIMES integrated assessment model (TIAM-FR). Presented at the 3rd international symposium on energy engineering, Economics and policy: EEEP 2011, p 6
Capros P, Paroussos L, Fragkos P et al (2014) European decarbonisation pathways under alternative technological and policy choices: a multi-model analysis. Energy Strategy Rev 2:231–245. doi:10.1016/j.esr.2013.12.007
Chen W (2005) The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling. Energy Policy 33:885–896. doi:10.1016/j.enpol.2003.10.012
Dai H, Mischke P (2014) Future energy consumption and emissions in East-, Central- and West-China: insights from soft-linking two global models. Energy Procedia 61:2584–2587. doi:10.1016/j.egypro.2014.12.253
Edenhofer O (2014) Climate change now—emissions, limits and possibilities. Presentation to the environmental protection agency, Dublin, Ireland
Fishbone LG, Abilock H (1981) MARKAL, a linear-programming model for energy systems analysis: Technical description of the bnl version. Int J Energy Res 5:353–375. doi:10.1002/er.4440050406
Fleiter T, Worrell E, Eichhammer W (2011) Barriers to energy efficiency in industrial bottom-up energy demand models—a review. Renew Sustain Energy Rev 15:3099–3111. doi:10.1016/j.rser.2011.03.025
Frei CW, Haldi P-A, Sarlos G (2003) Dynamic formulation of a top-down and bottom-up merging energy policy model. Energy Policy 31:1017–1031. doi:10.1016/S0301-4215(02)00170-2
Grubb M, Kohler J, Anderson D (2002) Induced technical change in energy and environmental modeling: Analytic approaches and policy implications. Annu Rev Energy Environ 27:271–308. doi:10.1146/annurev.energy.27.122001.083408
Grubler A, Nakićenović N, Victor DG (1999) Dynamics of energy technologies and global change. Energy Policy 27:247–280. doi:10.1016/S0301-4215(98)00067-6
Guivarch C, Hallegatte S, Crassous R (2009) The resilience of the Indian economy to rising oil prices as a validation test for a global energy–environment–economy CGE model. Energy Policy 37:4259–4266. doi:10.1016/j.enpol.2009.05.025
Hageman LA, Young DM (2012) Applied iterative methods. Courier Dover Publications, New York
Hamdi-Cherif M, Guivarch C, Quirion P (2011) Sectoral targets for developing countries: combining “common but differentiated re-sponsibilities” with “meaningful participation”. Clim Policy 11:731–751. doi:10.3763/cpol.2009.0070
Hardin G (1968) The tragedy of the commons. Science 162:1243–1248. doi:10.1126/science.162.3859.1243
HM Revenue and Customs (2013) Carbon price floor reform and other technical ammendments. HM Revenue U Customs, London, UK
Hoffman KC, Jorgenson DW (1977) Economic and technological Models for evaluation of energy policy. Bell J Econ 8:444–466. doi:10.2307/3003296
Hourcade J-C (1993) Modelling long-run scenarios: Methodology lessons from a prospective study on a low CO2 intensive country. Energy Policy 21:309–326. doi:10.1016/0301-4215(93)90252-B
Hourcade JC, Jaccard M, Bataille C, Ghersi F (2006) Hybrid modeling: new answers to old challenges. Energy J Special Issue 2 (Hybrid Modeling):1–12
IPCC (2013) Climate change 2013: the physical science basis. Cambridge University Press, New York, USA
IPCC (2014) Climate change 2014: mitigation of climate change. Cambridge University Press, Washington, USA
Jackson PT (2009) Prosperity without growth?—the transition to a sustainable economy. Sustainable Development Commission, London
Johansen L (1960) A multi-sector study of economic growth. North-Holland Pub. Co, Amsterdam
Jorgenson DW (1982) An econometric approach to general equilibrium analysis. In: Hazewinkel M, Kan AHGR (eds) Current developments in the interface: economics, econometrics, mathematics. Springer, Netherlands, pp 125–155
Kanudia A, Labriet M, Loulou R (2014) Effectiveness and efficiency of climate change mitigation in a technologically uncertain world. Clim Change 123:543–558. doi:10.1007/s10584-013-0854-9
Kiuila O, Rutherford TF (2013) Piecewise smooth approximation of bottom–up abatement cost curves. Energy Econ 40:734–742. doi:10.1016/j.eneco.2013.07.016
Krey V, Luderer G, Clarke L, Kriegler E (2014) Getting from here to there—energy technology transformation pathways in the EMF27 scenarios. Clim Change 123:369–382. doi:10.1007/s10584-013-0947-5
Kumhof M, Muir D (2014) Oil and the world economy: some possible futures. Philos Trans R Soc Math Phys Eng Sci 372:20120327. doi:10.1098/rsta.2012.0327
Labriet M, Drouet L, Vielle M, Haurie A, Kanudia A, Loulou R (2015) Assessment of the effectiveness of global climate policies using coupled bottom-up and top-down models. Les Cahiers du GERAD, G-2010-30 revised in January 2015, Montreal, Canada, p 22
Labriet M, Kanudia A, Loulou R (2012) Climate mitigation under an uncertain technology future: A TIAM-World analysis. Energy Econ 34(Supplement 3):S366–S377. doi:10.1016/j.eneco.2012.02.016
Loulou R (2008) ETSAP-TIAM: the TIMES integrated assessment model. part II: mathematical formulation. Comput Manag Sci 5:41–66. doi:10.1007/s10287-007-0045-0
Loulou R, Labriet M (2008) ETSAP-TIAM: the TIMES integrated assessment model part I: model structure. Comput Manag Sci 5:7–40. doi:10.1007/s10287-007-0046-z
Loulou R, Remme U, kanudia A, Lehtila A, Goldstein G (2005) Documentation for the TIMES Model. Energy technology system analysis programme (ETSAP), Paris
Lucas RE Jr (1976) Econometric policy evaluation: a critique. Carnegie-Rochester Conf Ser Public Policy 1:19–46. doi:10.1016/S0167-2231(76)80003-6
Manne A, Mendelsohn R, Richels R (1995) MERGE: a model for evaluating regional and global effects of GHG reduction policies. Energy Policy 23:17–34. doi:10.1016/0301-4215(95)90763-W
Manne AS, Wene CO (1992) MARKAL-MACRO: a linked model for energy-economy analysis. Brookhaven National Lab, NY
Martinsen T (2011) Introducing technology learning for energy technologies in a national CGE model through soft links to global and national energy models. Energy Policy 39:3327–3336. doi:10.1016/j.enpol.2011.03.025
Mathy S, Guivarch C (2010) Climate policies in a second-best world—a case study on India. Energy Policy 38:1519–1528. doi:10.1016/j.enpol.2009.11.035
Messner S, Schrattenholzer L (2000) MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively. Energy 25:267–282. doi:10.1016/S0360-5442(99)00063-8
Mischke P (2013) China’s energy statistics in a global context: a methodology to develop regional energy balances for East, Central, and West China
Mischke P, Karlsson KB (2014) Modelling tools to evaluate China’s future energy system—a review of the Chinese perspective. Energy 69:132–143. doi:10.1016/j.energy.2014.03.019
National People’s Congress (1985) The seventh five year plan for national economic and social development. Peoples Education Press, Beijing, China
Nordhaus WD (1994) Managing the global commons: the economics of climate change, 1st edn. The MIT Press, Cambridge, MA
OECD, IEA (2013) World energy outlook 2013. International Energy Agency, Paris, France
O’Neill BC, Kriegler E, Riahi K et al (2014) A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim Change 122:387–400. doi:10.1007/s10584-013-0905-2
Proença S, St. Aubyn M (2013) Hybrid modeling to support energy-climate policy: effects of feed-in tariffs to promote renewable energy in Portugal. Energy Econ 38:176–185. doi:10.1016/j.eneco.2013.02.013
Ricci O, Selosse S (2013) Global and regional potential for bioelectricity with carbon capture and storage. Energy Policy 52:689–698. doi:10.1016/j.enpol.2012.10.027
Rozenberg J, Hallegatte S, Vogt-Schilb A et al (2010) Climate policies as a hedge against the uncertainty on future oil supply. Clim Change 101:663–668. doi:10.1007/s10584-010-9868-8
Sassi O, Crassous R, Hourcade JC et al (2010) IMACLIM-R: a modelling framework to simulate sustainable development pathways. Int J Glob Environ Issues 10:5. doi:10.1504/IJGENVI.2010.030566
Strachan N, Kannan R (2008) Hybrid modelling of long-term carbon reduction scenarios for the UK. Energy Econ 30:2947–2963. doi:10.1016/j.eneco.2008.04.009
Sue Wing I (2008) The synthesis of bottom-up and top-down approaches to climate policy modeling: electric power technology detail in a social accounting framework. Energy Econ 30:547–573. doi:10.1016/j.eneco.2006.06.004
The Global Commission on the Economy and Climate (2014) Better growth, better climate—the new climate economy report. The Global Commission on the Economy and Climate, Washington, USA
Warr B, Ayres R (2006) REXS: a forecasting model for assessing the impact of natural resource consumption and technological change on economic growth. Struct Change Econ Dyn 17:329–378. doi:10.1016/j.strueco.2005.04.004
Wene C-O (1996) Energy-economy analysis: Linking the macroeconomic and systems engineering approaches. Energy 21:809–824. doi:10.1016/0360-5442(96)00017-5
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Glynn, J. et al. (2015). Economic Impacts of Future Changes in the Energy System—Global Perspectives. In: Giannakidis, G., Labriet, M., Ó Gallachóir, B., Tosato, G. (eds) Informing Energy and Climate Policies Using Energy Systems Models. Lecture Notes in Energy, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-16540-0_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-16540-0_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16539-4
Online ISBN: 978-3-319-16540-0
eBook Packages: EnergyEnergy (R0)