Skip to main content

Economic Impacts of Future Changes in the Energy System—Global Perspectives

  • Chapter
  • First Online:
Informing Energy and Climate Policies Using Energy Systems Models

Abstract

In a climate constrained future, hybrid energy-economy model coupling gives additional insight into interregional competition, trade, industrial delocalisation and overall macroeconomic consequences of decarbonising the energy system. Decarbonising the energy system is critical in mitigating climate change. This chapter summarises modelling methodologies developed in the ETSAP community to assess economic impacts of decarbonising energy systems at a global level. The next chapter of this book focuses on a national perspective. The range of economic impacts is regionally dependent upon the stage of economic development, the level of industrialisation, energy intensity of exports, and competition effects due to rates of relative decarbonisation. Developed nation’s decarbonisation targets are estimated to result in a manageable GDP loss in the region of 2 % by 2050. Energy intensive export driven developing countries such as China and India, and fossil fuel exporting nations can expect significantly higher GDP loss of up to 5 % GDP per year by mid-century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    MARKAL—MARKet ALocation model.

  2. 2.

    TIMES—The Integrated MARKAL-Efom System.

  3. 3.

    www.climacap.org.

  4. 4.

    In the modelling approach applied in this study the carbon tax revenues has been recycled to households.

References

  • Arrow KJ, Debreu G (1954) Existence of an equilibrium for a competitive economy. Econometrica 22:265–290. doi:10.2307/1907353

    Article  MATH  MathSciNet  Google Scholar 

  • Assoumou E, Maïzi N (2011) Carbon value dynamics for France: a key driver to support mitigation pledges at country scale. Energy Policy 39:4325–4336. doi:10.1016/j.enpol.2011.04.050

    Article  Google Scholar 

  • Ayres RU, van den Bergh JCJM, Lindenberger D, Warr B (2013) The underestimated contribution of energy to economic growth. Struct Change Econ Dyn 27:79–88. doi:10.1016/j.strueco.2013.07.004

    Article  Google Scholar 

  • Bataille C, Jaccard M, Nyboer J, Rivers N (2006) Towards general equilibrium in a technology-rich model with empirically estimated behavioral parameters. Energy J Special Issue 2 (Hybrid Modeling):93–112

    Google Scholar 

  • Benes J, Chauvet M, Kamenik O et al (2012) The future of oil: Geology versus technology. International Monetary Fund, Washington, USA

    Google Scholar 

  • Bernard A, Vielle M (2008) GEMINI-E3, a general equilibrium model of international–national interactions between economy, energy and the environment. Comput Manag Sci 5:173–206. doi:10.1007/s10287-007-0047-y

    Article  MATH  MathSciNet  Google Scholar 

  • Berndt ER, Wood DO (1975) Technology, prices, and the derived demand for energy. Rev Econ Stat 57:259–268. doi:10.2307/1923910

    Article  Google Scholar 

  • Böhringer C (1998) The synthesis of bottom-up and top-down in energy policy modeling. Energy Econ 20:233–248. doi:10.1016/S0140-9883(97)00015-7

    Article  Google Scholar 

  • Böhringer C, Rutherford TF (2008) Combining bottom-up and top-down. Energy Econ 30:574–596. doi:10.1016/j.eneco.2007.03.004

    Article  Google Scholar 

  • Böhringer C, Rutherford TF (2009) Integrated assessment of energy policies: decomposing top-down and bottom-up. J Econ Dyn Control 33:1648–1661. doi:10.1016/j.jedc.2008.12.007

    Article  MATH  Google Scholar 

  • Bosetti V, Carraro C, Galeotti M et al (2006) WITCH a world induced technical change hybrid model. Energy J 27:13–37

    Google Scholar 

  • Bouckaert S, Selosse S, Dubreuil A, Assoumou E, Maïzi N (2011) Analyzing water supply in future energy systems using the TIMES integrated assessment model (TIAM-FR). Presented at the 3rd international symposium on energy engineering, Economics and policy: EEEP 2011, p 6

    Google Scholar 

  • Capros P, Paroussos L, Fragkos P et al (2014) European decarbonisation pathways under alternative technological and policy choices: a multi-model analysis. Energy Strategy Rev 2:231–245. doi:10.1016/j.esr.2013.12.007

    Article  Google Scholar 

  • Chen W (2005) The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling. Energy Policy 33:885–896. doi:10.1016/j.enpol.2003.10.012

    Article  Google Scholar 

  • Dai H, Mischke P (2014) Future energy consumption and emissions in East-, Central- and West-China: insights from soft-linking two global models. Energy Procedia 61:2584–2587. doi:10.1016/j.egypro.2014.12.253

    Article  Google Scholar 

  • Edenhofer O (2014) Climate change now—emissions, limits and possibilities. Presentation to the environmental protection agency, Dublin, Ireland

    Google Scholar 

  • Fishbone LG, Abilock H (1981) MARKAL, a linear-programming model for energy systems analysis: Technical description of the bnl version. Int J Energy Res 5:353–375. doi:10.1002/er.4440050406

    Article  Google Scholar 

  • Fleiter T, Worrell E, Eichhammer W (2011) Barriers to energy efficiency in industrial bottom-up energy demand models—a review. Renew Sustain Energy Rev 15:3099–3111. doi:10.1016/j.rser.2011.03.025

    Article  Google Scholar 

  • Frei CW, Haldi P-A, Sarlos G (2003) Dynamic formulation of a top-down and bottom-up merging energy policy model. Energy Policy 31:1017–1031. doi:10.1016/S0301-4215(02)00170-2

    Article  Google Scholar 

  • Grubb M, Kohler J, Anderson D (2002) Induced technical change in energy and environmental modeling: Analytic approaches and policy implications. Annu Rev Energy Environ 27:271–308. doi:10.1146/annurev.energy.27.122001.083408

    Article  Google Scholar 

  • Grubler A, Nakićenović N, Victor DG (1999) Dynamics of energy technologies and global change. Energy Policy 27:247–280. doi:10.1016/S0301-4215(98)00067-6

    Article  Google Scholar 

  • Guivarch C, Hallegatte S, Crassous R (2009) The resilience of the Indian economy to rising oil prices as a validation test for a global energy–environment–economy CGE model. Energy Policy 37:4259–4266. doi:10.1016/j.enpol.2009.05.025

    Article  Google Scholar 

  • Hageman LA, Young DM (2012) Applied iterative methods. Courier Dover Publications, New York

    Google Scholar 

  • Hamdi-Cherif M, Guivarch C, Quirion P (2011) Sectoral targets for developing countries: combining “common but differentiated re-sponsibilities” with “meaningful participation”. Clim Policy 11:731–751. doi:10.3763/cpol.2009.0070

    Article  Google Scholar 

  • Hardin G (1968) The tragedy of the commons. Science 162:1243–1248. doi:10.1126/science.162.3859.1243

    Article  Google Scholar 

  • HM Revenue and Customs (2013) Carbon price floor reform and other technical ammendments. HM Revenue U Customs, London, UK

    Google Scholar 

  • Hoffman KC, Jorgenson DW (1977) Economic and technological Models for evaluation of energy policy. Bell J Econ 8:444–466. doi:10.2307/3003296

    Article  Google Scholar 

  • Hourcade J-C (1993) Modelling long-run scenarios: Methodology lessons from a prospective study on a low CO2 intensive country. Energy Policy 21:309–326. doi:10.1016/0301-4215(93)90252-B

    Article  Google Scholar 

  • Hourcade JC, Jaccard M, Bataille C, Ghersi F (2006) Hybrid modeling: new answers to old challenges. Energy J Special Issue 2 (Hybrid Modeling):1–12

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Cambridge University Press, New York, USA

    Google Scholar 

  • IPCC (2014) Climate change 2014: mitigation of climate change. Cambridge University Press, Washington, USA

    Google Scholar 

  • Jackson PT (2009) Prosperity without growth?—the transition to a sustainable economy. Sustainable Development Commission, London

    Google Scholar 

  • Johansen L (1960) A multi-sector study of economic growth. North-Holland Pub. Co, Amsterdam

    Google Scholar 

  • Jorgenson DW (1982) An econometric approach to general equilibrium analysis. In: Hazewinkel M, Kan AHGR (eds) Current developments in the interface: economics, econometrics, mathematics. Springer, Netherlands, pp 125–155

    Chapter  Google Scholar 

  • Kanudia A, Labriet M, Loulou R (2014) Effectiveness and efficiency of climate change mitigation in a technologically uncertain world. Clim Change 123:543–558. doi:10.1007/s10584-013-0854-9

    Article  Google Scholar 

  • Kiuila O, Rutherford TF (2013) Piecewise smooth approximation of bottom–up abatement cost curves. Energy Econ 40:734–742. doi:10.1016/j.eneco.2013.07.016

    Article  Google Scholar 

  • Krey V, Luderer G, Clarke L, Kriegler E (2014) Getting from here to there—energy technology transformation pathways in the EMF27 scenarios. Clim Change 123:369–382. doi:10.1007/s10584-013-0947-5

    Article  Google Scholar 

  • Kumhof M, Muir D (2014) Oil and the world economy: some possible futures. Philos Trans R Soc Math Phys Eng Sci 372:20120327. doi:10.1098/rsta.2012.0327

    Article  MathSciNet  Google Scholar 

  • Labriet M, Drouet L, Vielle M, Haurie A, Kanudia A, Loulou R (2015) Assessment of the effectiveness of global climate policies using coupled bottom-up and top-down models. Les Cahiers du GERAD, G-2010-30 revised in January 2015, Montreal, Canada, p 22

    Google Scholar 

  • Labriet M, Kanudia A, Loulou R (2012) Climate mitigation under an uncertain technology future: A TIAM-World analysis. Energy Econ 34(Supplement 3):S366–S377. doi:10.1016/j.eneco.2012.02.016

    Article  Google Scholar 

  • Loulou R (2008) ETSAP-TIAM: the TIMES integrated assessment model. part II: mathematical formulation. Comput Manag Sci 5:41–66. doi:10.1007/s10287-007-0045-0

    Article  MATH  MathSciNet  Google Scholar 

  • Loulou R, Labriet M (2008) ETSAP-TIAM: the TIMES integrated assessment model part I: model structure. Comput Manag Sci 5:7–40. doi:10.1007/s10287-007-0046-z

    Article  MATH  MathSciNet  Google Scholar 

  • Loulou R, Remme U, kanudia A, Lehtila A, Goldstein G (2005) Documentation for the TIMES Model. Energy technology system analysis programme (ETSAP), Paris

    Google Scholar 

  • Lucas RE Jr (1976) Econometric policy evaluation: a critique. Carnegie-Rochester Conf Ser Public Policy 1:19–46. doi:10.1016/S0167-2231(76)80003-6

    Article  Google Scholar 

  • Manne A, Mendelsohn R, Richels R (1995) MERGE: a model for evaluating regional and global effects of GHG reduction policies. Energy Policy 23:17–34. doi:10.1016/0301-4215(95)90763-W

    Article  Google Scholar 

  • Manne AS, Wene CO (1992) MARKAL-MACRO: a linked model for energy-economy analysis. Brookhaven National Lab, NY

    Google Scholar 

  • Martinsen T (2011) Introducing technology learning for energy technologies in a national CGE model through soft links to global and national energy models. Energy Policy 39:3327–3336. doi:10.1016/j.enpol.2011.03.025

    Article  Google Scholar 

  • Mathy S, Guivarch C (2010) Climate policies in a second-best world—a case study on India. Energy Policy 38:1519–1528. doi:10.1016/j.enpol.2009.11.035

    Article  Google Scholar 

  • Messner S, Schrattenholzer L (2000) MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively. Energy 25:267–282. doi:10.1016/S0360-5442(99)00063-8

    Article  Google Scholar 

  • Mischke P (2013) China’s energy statistics in a global context: a methodology to develop regional energy balances for East, Central, and West China

    Google Scholar 

  • Mischke P, Karlsson KB (2014) Modelling tools to evaluate China’s future energy system—a review of the Chinese perspective. Energy 69:132–143. doi:10.1016/j.energy.2014.03.019

    Article  Google Scholar 

  • National People’s Congress (1985) The seventh five year plan for national economic and social development. Peoples Education Press, Beijing, China

    Google Scholar 

  • Nordhaus WD (1994) Managing the global commons: the economics of climate change, 1st edn. The MIT Press, Cambridge, MA

    Google Scholar 

  • OECD, IEA (2013) World energy outlook 2013. International Energy Agency, Paris, France

    Google Scholar 

  • O’Neill BC, Kriegler E, Riahi K et al (2014) A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim Change 122:387–400. doi:10.1007/s10584-013-0905-2

    Article  Google Scholar 

  • Proença S, St. Aubyn M (2013) Hybrid modeling to support energy-climate policy: effects of feed-in tariffs to promote renewable energy in Portugal. Energy Econ 38:176–185. doi:10.1016/j.eneco.2013.02.013

    Article  Google Scholar 

  • Ricci O, Selosse S (2013) Global and regional potential for bioelectricity with carbon capture and storage. Energy Policy 52:689–698. doi:10.1016/j.enpol.2012.10.027

    Article  Google Scholar 

  • Rozenberg J, Hallegatte S, Vogt-Schilb A et al (2010) Climate policies as a hedge against the uncertainty on future oil supply. Clim Change 101:663–668. doi:10.1007/s10584-010-9868-8

    Article  Google Scholar 

  • Sassi O, Crassous R, Hourcade JC et al (2010) IMACLIM-R: a modelling framework to simulate sustainable development pathways. Int J Glob Environ Issues 10:5. doi:10.1504/IJGENVI.2010.030566

    Article  Google Scholar 

  • Strachan N, Kannan R (2008) Hybrid modelling of long-term carbon reduction scenarios for the UK. Energy Econ 30:2947–2963. doi:10.1016/j.eneco.2008.04.009

    Article  Google Scholar 

  • Sue Wing I (2008) The synthesis of bottom-up and top-down approaches to climate policy modeling: electric power technology detail in a social accounting framework. Energy Econ 30:547–573. doi:10.1016/j.eneco.2006.06.004

    Article  Google Scholar 

  • The Global Commission on the Economy and Climate (2014) Better growth, better climate—the new climate economy report. The Global Commission on the Economy and Climate, Washington, USA

    Google Scholar 

  • Warr B, Ayres R (2006) REXS: a forecasting model for assessing the impact of natural resource consumption and technological change on economic growth. Struct Change Econ Dyn 17:329–378. doi:10.1016/j.strueco.2005.04.004

    Article  Google Scholar 

  • Wene C-O (1996) Energy-economy analysis: Linking the macroeconomic and systems engineering approaches. Energy 21:809–824. doi:10.1016/0360-5442(96)00017-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Glynn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glynn, J. et al. (2015). Economic Impacts of Future Changes in the Energy System—Global Perspectives. In: Giannakidis, G., Labriet, M., Ó Gallachóir, B., Tosato, G. (eds) Informing Energy and Climate Policies Using Energy Systems Models. Lecture Notes in Energy, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-16540-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16540-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16539-4

  • Online ISBN: 978-3-319-16540-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics