Skip to main content

On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences

  • Chapter
  • First Online:

Abstract

This chapter presents popular meta-heuristics inspired from nature focusing on evolutionary computation (EC). The first section, as an elevator pitch, briefly walks through problem solving, touching upon notions such as optimization problems, meta-heuristics, constraint handling, hybridization, and the No Free Lunch Theorem for optimization, and also giving very short introductions into several most popular meta-heuristics. The next two sections are dedicated to evolutionary algorithms and swarm intelligence (SI), two of the main areas of EC. Three particular optimization methods illustrating these two areas are presented in more detail: genetic algorithms (GAs), differential evolution (DE), and particle swarm optimization (PSO). For a better understanding of these algorithms, references to R packages implementing the algorithms and code samples to solve numerical and combinatorial problems are given. The fourth section is dedicated to the use of EC techniques in data analysis. Optimization of the hyper-parameters of conventional machine learning techniques is illustrated by a case study. The last section reviews applications of meta-heuristics in geosciences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The package can be freely downloaded from http://cran.r-project.org/web/packages/DEoptim/index.html.

References

  • Abdel Rasoul RR, Daoud A, El Tayeb ESA (2014) Production allocation in multi-layers gas producing wells using temperature measurements with the application of a genetic algorithm. Pet Sci Technol 32(3):363–370

    Google Scholar 

  • Ahmadi MA, Ebadi M (2014) Robust intelligent tool for estimation dew point pressure in retrograded condensate gas reservoirs: application of particle swarm optimization. J Pet Sci Eng 123:7–19

    Google Scholar 

  • Ahmadi MA, Zendehboudi S, Lohi A, Elkamel A, Chatzis I (2013) Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization. Geophys Prospect 61(3):582–598

    Google Scholar 

  • Al-kazemi B, Mohan CK (2002) Multi-phase generalization of the particle swarm optimization algorithm. In: Proceedings of the IEEE congress on evolutionary computation. IEEE Press

    Google Scholar 

  • Angeline PJ (1998) Using selection to improve particle swarm optimization. In: Proceedings of the IEEE international conference on evolutionary computation. IEEE Press, pp 84–89. ISBN 0-7803-4869-9

    Google Scholar 

  • Assareh E, Behrang MA, Assari MR, Ghanbarzadeh A (2010) Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in iran. Energy 35(12):5223–5229

    Google Scholar 

  • Back T (1996) Evolutionary algorithms in theory and practice. Oxford University Press, New York

    Google Scholar 

  • Baker JD (1985) Adaptive selection methods for genetic algorithms. In: Proceedings of an International Conference on Genetic Algorithms and their applications. Hillsdale, New Jersey, pp 101–111

    Google Scholar 

  • Baker JD (1987) Reducing bias and inefficiency in the selection algorithm. In: Proceedings of the second international conference on genetic algorithms. pp 14–21

    Google Scholar 

  • Bautu A (2010) Generalizations of Particle Swarm Optimization: applications of particle swarm algorithms to statistical physics and bioinformatics problems. PhD Thesis, Department of Computer Science, Al. I. Cuza University, Lambert Academic Publishing. ISBN 978-3848417315

    Google Scholar 

  • Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35(3):268–308. ISSN 0360-0300. doi:http://doi.acm.org/10.1145/937503.937505

  • Boyd R, Richerson PJ (1985) Culture and the evolutionary process. The University of Chicago Press, Chicago

    Google Scholar 

  • Bratton D, Kennedy J (2007) Defining a standard for particle swarm optimization. In: Swarm intelligence symposium, 2007. SIS 2007, IEEE, pp 120–127

    Google Scholar 

  • Breaban M (2011) Clustering: evolutionary approaches. PhD Thesis, Department of Computer Science, Al. I. Cuza University

    Google Scholar 

  • Breaban M, Luchian H (2005) PSO under an adaptive scheme. In: Proceedings of the IEEE congress on evolutionary computation. IEEE Press, pp 1212–1217

    Google Scholar 

  • Breaban ME, Luchian H (2011) PSO aided k-means clustering: introducing connectivity in k-means. In: Proceedings of the 13th annual conference on Genetic and evolutionary computation. ACM, pp 1227–1234

    Google Scholar 

  • Breaban ME, Luchian H, Simovici D (2012) A genetic clustering algorithm by monomial projection pursuit. In Symbolic and numeric algorithms for scientific computing (SYNASC), 14th international symposium on 2012. IEEE, pp 214–219

    Google Scholar 

  • Bremermann HJ (1958) The evolution of intelligence: the nervous system as a model of its environment. Technical Report No. 1, Department of Mathematics, University of Washington, Seattle

    Google Scholar 

  • Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, Qu R (2013) Hyper-heuristics: a survey of the state of the art. J Oper Res Soc 64(12):1695–1724

    Google Scholar 

  • Clerc M (1999) The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the IEEE congress on evolutionary computation, vol 3, pp 1951–1957. doi:10.1109/CEC.1999.785513

  • Clerc M (2006) Particle swarm optimization. Hermes Sci, London. ISBN 1905209045

    Book  MATH  Google Scholar 

  • Coello CAC, Lechunga MS (2002) Mopso: a proposal for multiple objective particle swarm optimization. In Proceedings of the IEEE congress on evolutionary computation. IEEE Press, pp 1051–1056

    Google Scholar 

  • Cortis A, Oldenburg CM, Benson SM (2008) The role of optimality in characterizing CO2 seepage from geologic carbon sequestration sites. Int J Greenh Gas Control 2(4):640–652

    Google Scholar 

  • De Jong KA (2006) Evolutionary computation. A unified approach. MIT Press, Cambridge

    Google Scholar 

  • Deb K, Goldberg DE (1989) An investigation of niche and species formation in genetic function optimization. In: Proceedings of the 3rd international conference on genetic algorithms, San Francisco. Morgan Kaufmann Publishers Inc., pp 42–50, ISBN 1-55860-066-3. http://portal.acm.org/citation.cfm?id=645512.657099

  • Dorigo M, Stützle T (2004) Ant colony optimization. Bradford Company, Scituate. ISBN 0262042193

    Book  MATH  Google Scholar 

  • Dumitrescu D (2000) Genetic chromodynamics. Studia Universitatis Babes-Bolyai Cluj-Napoca, Ser. Informatica 45:39–50

    MATH  Google Scholar 

  • Fernández Martnez JL, Mukerji T, Garca Gonzalo E, Suman A (2012) Reservoir characterization and inversion uncertainty via a family of particle swarm optimizers. Geophysics 77(1):M1–M16

    Google Scholar 

  • Fichter DP et al (2000) Application of genetic algorithms in portfolio optimization for the oil and gas industry. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers

    Google Scholar 

  • Fogel LJ, Owens AJ, Walsh MJ (1966) Artifficial intelligence through simulated evolution. Wiley, New York

    Google Scholar 

  • Fraser AS (1957) Simulations of genetic systems by automatic digital computers. Aust J Biol Sci 10:492–499

    Google Scholar 

  • Ghaedi M, Ghotbi C, Aminshahidy B (2013) Optimization of gas allocation to a group of wells in gas lift in one of the iranian oil fields using an efficient hybrid genetic algorithm (HGA). Pet Sci Technol 31(9):949–959

    Article  Google Scholar 

  • Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549. ISSN 0305-0548. doi:10.1016/0305-0548(86)90048-1

  • Grefenstette JJ (1986) Optimization of control parameters for genetic algorithms. IEEE Trans Syst Man Cybern 16(1): 122–128

    Google Scholar 

  • Grefenstette JJ (1987) Incorporating problem specific knowledge into genetic algorithms. Genet Algorithms Simul Annealing 4:42–60

    Google Scholar 

  • Hajizadeh Y, Demyanov V, Mohamed L, Christie M (2011) Comparison of evolutionary and swarm intelligence methods for history matching and uncertainty quantification in petroleum reservoir models. In: Intelligent computational optimization in engineering. Springer, Berlin, pp 209–240

    Google Scholar 

  • Hale JL, Householder BJ, Greene KL (2002) The theory of reasoned action. Sage Publications, Thousand Oaks, pp 259–286

    Google Scholar 

  • Hillis WD (1990) Co-evolving parasites improve simulated evolution as an optimization procedure. Phys D Nonlinear Phenom 42(1):228–234

    Article  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Holland JH (1998) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. MIT Press, Cambridge. ISBN 0-262-58111

    Google Scholar 

  • Hruschka ER, Campello RJGB., Freitas AA, De Carvalho APLF (2009) A survey of evolutionary algorithms for clustering. IEEE Trans Syst Man Cybern Part C Appl Rev 39(2):133–155

    Google Scholar 

  • Hu X, Eberhart RC (2001) Tracking dynamic systems with PSO: where’s the cheese? In Proceedings of the workshop on particle swarm optimization, pp 80–83

    Google Scholar 

  • Hu X, Eberhart RC (2002) Multiobjective optimization using dynamic neighborhood particle swarm optimization. In: Proceedings of the IEEE congress on evolutionary computation. IEEE Press, pp 1677–1681

    Google Scholar 

  • Hu X, Eberhart RC (2002) Solving constrained nonlinear optimization problems with particle swarm optimization. In: Proceedings of the sixth world multiconference on systemics, cybernetics and informatics

    Google Scholar 

  • Ionita M, Croitoru C, Breaban M (2006) Incorporating inference into evolutionary algorithms for max-csp. In: 3rd international workshop on hybrid metaheuristics, LNCS 4030. Springer, Berlin, pp 139–149

    Google Scholar 

  • Jong KD (2006) Evolutionary computation: a unified approach. MIT Press. ISBN 0-262-04194

    Google Scholar 

  • Kennedy J (1999) Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the IEEE congress of evolutionary computation, vol 3. IEEE Press, pp 931–1938. doi:10.1109/CEC.1999.785513

  • Kennedy J (2002) Population structure and particle swarm performance. In: Proceedings of the congress on evolutionary computation (CEC 2002). IEEE Press, pp 1671–1676

    Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks, vol 4. IEEE Press, pp 1942–1948

    Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, pp 1942–1948

    Google Scholar 

  • Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: Proceedings of the world multiconference on systemics, cybernetics and informatics, vol 5, Piscataway. IEEE Press, pp 4104–4109

    Google Scholar 

  • Kennedy J, Mendes R (2003) Neighborhood topologies in fully-informed and best-of neighborhood particle swarms. In: Proceedings of the 2003 IEEE SMC workshop on soft computing in industrial applications (SMCia03). IEEE Computer Society, pp 45–50

    Google Scholar 

  • Kenneth ADJ (1975) An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, University of Michigan, Dissertation Abstracts International, vol 36, no 10, Ann Arbor, AAI7609381

    Google Scholar 

  • Khanesar MA, Tavakoli H, Teshnehlab M, Shoorehdeli MA (2009) Novel binary particle swarm optimization. In: Tech Education and Publishing, pp 1–10. ISBN 978-953-7619-48-0

    Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP et al (1983) Optimization by simmulated annealing. Science 220(4598):671–680

    Google Scholar 

  • Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Safety 910(9):992–1007. http://www.sciencedirect.com/science/article/B6V4T-4J0NY2F-2/2/97db869c46fc43f457f3d509adaa15b5

  • Koza J (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge

    Google Scholar 

  • Krink T, Vesterstrom JS, Riget J (2002) Particle swarm optimisation with spatial particle extension. In: Proceedings of the evolutionary computation on 2002. CEC’02. Proceedings of the 2002 Congress—vol 02, CEC’02. IEEE Computer Society, Washington, pp 1474–1479. ISBN 0-7803-7282-4. http://portal.acm.org/citation.cfm?id=1251972.1252447

  • Lanzi PL, Stolzmann W, Wilson SW (2000) Learning classifier systems: from foundations to applications (No. 1813). Springer, Berlin

    Google Scholar 

  • Lïvbjerg M, Rasmussen TK, Krink T (2001) Hybrid particle swarm optimiser with breeding and subpopulations. In: Proceedings of the genetic and evolutionary computation conference (GECCO-2001). Morgan Kaufmann, pp 469–476

    Google Scholar 

  • Luchian S, Luchian H, Petriuc M (1994) Evolutionary automated classification. In: Proceedings of 1st congress on evolutionary computation, pp 585–588

    Google Scholar 

  • Lyons J, Nasrabadi H (2013) Well placement optimization under time-dependent uncertainty using an ensemble kalman filter and a genetic algorithm. J Petrol Sci Eng 109:70–79

    Article  Google Scholar 

  • Martnez JLF, Gonzalo EG, Álvarez JPF, Kuzma HA, Pérez COM (2010) PSO: A powerful algorithm to solve geophysical inverse problems: Application to a 1D-DC resistivity case. J Appl Geophys 710(1):13–25

    Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Google Scholar 

  • Michalewicz Z (1992) Genetic algorithms + data structures = evolution programs (3rd edn). Springer, Berlin. ISBN 3-540-60676-9

    Google Scholar 

  • Mitchell M (1996) An introduction to genetic algorithms. MIT Press, Cambridge. ISBN 0-262-13316-4

    Google Scholar 

  • Mitchell M, Forrest S, Holland JH (1992) The royal road for genetic algorithms: fitness landscapes and ga performance. In: Proceedings of the first European conference on artificial life, pp 245–254. The MIT Press, Cambridge

    Google Scholar 

  • Mohaghegh SD (2005) A new methodology for the identification of best practices in the oil and gas industry, using intelligent systems. J Pet Sci Eng 49(3):239–260

    Google Scholar 

  • Mohaghegh SD et al (2005) Recent developments in application of artificial intelligence in petroleum engineering. J Pet Technol 57(4):86–91

    Google Scholar 

  • Mullen KM, Ardia D, Gil DL, Windover D, Cline J (2011) DEoptim: an R package for global optimization by differential evolution. J Stat Softw 40(6):1–26

    Google Scholar 

  • Nateri K Madavan (2002) Multiobjective optimization using a pareto differential evolution approach. In: Proceedings of the world on congress on computational intelligence, vol 2. IEEE, pp 1145–1150

    Google Scholar 

  • Nguyen NT, Kowalczyk R (2012) Transactions on computational collective intelligence III. Springer, Berlin

    Google Scholar 

  • Nwankwor E, Nagar AK, Reid DC (2013) Hybrid differential evolution and particle swarm optimization for optimal well placement. Comput Geosci 17(2):249–268

    Google Scholar 

  • Onwunalu JE, Durlofsky LJ (2010) Application of a particle swarm optimization algorithm for determining optimum well location and type. Comput Geosci 14(1):183–198

    Google Scholar 

  • Park H-Y, Datta-Gupta A, King MJ (2014) Handling conflicting multiple objectives using pareto-based evolutionary algorithm during history matching of reservoir performance. J Pet Sci Eng

    Google Scholar 

  • Piotrowski AP, Osuch M, Napiorkowski MJ, Rowinski PM, Napiorkowski JJ (2014) Comparing large number of metaheuristics for artificial neural networks training to predict water temperature in a natural river. Comput Geosci 64:136–151

    Google Scholar 

  • Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57

    Google Scholar 

  • Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic programming. http://www.gp-field-guide.org.uk. (With contributions by JR Koza)

  • Poormirzaee R, Moghadam RH, Zarean A (2014) Inversion seismic refraction data using particle swarm optimization: a case study of Tabriz, Iran. Arab J Geosci 1–9

    Google Scholar 

  • Radcliffe NJ, Surry PD, Jz E (1995) Fitness variance of formae and performance prediction. In: Foundations of genetic algorithms, pp 51–72

    Google Scholar 

  • Raidl GR, Gottlieb J (2005) Empirical analysis of locality, heritability and heuristic bias in evolutionary algorithms: a case study for the multidimensional knapsack problem. Evol Comput 13(4):441–475

    Google Scholar 

  • Rana S, Jasola S, Kumar R (2011) A review on particle swarm optimization algorithms and their applications to data clustering. Artif Intell Rev 35(3):211–222

    Google Scholar 

  • Rechenberg I (1973) Evolutionsstrategie: optimierung technischer systeme nach prinzipien der biologischen evolution. In: Frommann-Holzboog

    Google Scholar 

  • Rechenberg I (1973) Evolutionstrategie: optimierung Technisher Systeme nach Prinzipien der Biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart

    Google Scholar 

  • Riget J, Vesterstrøm JS (2002) A diversity-guided particle swarm optimizer-the ARPSO. Department of Computer Science, University of Aarhus, Aarhus, Denmark, Technical Report, vol 2. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.2929

  • Safarzadeh MA, Motahhari SM (2014) Co-optimization of carbon dioxide storage and enhanced oil recovery in oil reservoirs using a multi-objective genetic algorithm (NSGA-II). Pet Sci 11(3):460–468

    Google Scholar 

  • Schwefel H-PP (1993) Evolution and optimum seeking. Wiley, Hoboken

    Google Scholar 

  • Scrucca L (2013) GA: a package for genetic algorithms in R. J Stat Softw 53(4):1–37. http://www.jstatsoft.org/v53/i04/

  • Shakhsi-Niaei M, Iranmanesh SH, Torabi SA (2013) A review of mathematical optimization applications in oil-and-gas upstream & midstream management. Int J Energy Stat 1(02):143–154

    Google Scholar 

  • Shaw R, Srivastava S (2007) Particle swarm optimization: a new tool to invert geophysical data. Geophysics 72(2):F75–F83

    Google Scholar 

  • Shelokar PS, Jayaraman VK, Kulkarni BD (2004) An ant colony approach for clustering. Analytica Chimica Acta 509(2):187–195

    Google Scholar 

  • Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. In: EP’98: proceedings of the 7th international conference on evolutionary programming VII. Springer, London, pp 591–600. ISBN 3540648917

    Google Scholar 

  • Simon HA (1969) The sciences of the artificial, vol 136. MIT Press, Cambridge

    Google Scholar 

  • Singh HK, Ray T, Sarker R (2013) Optimum oil production planning using infeasibility driven evolutionary algorithm. Evolut Comput 21(1):65–82

    Google Scholar 

  • Stoean R, Preuss M, Stoean C, El-Darzi E, Dumitrescu D (2009) Support vector machine learning with an evolutionary engine. J Oper Res Soc 60(8):1116–1122

    Google Scholar 

  • Stoean C, Preuss M, Stoean R, Dumitrescu D (2010) Multimodal optimization by means of a topological species conservation algorithm. IEEE Trans Evolut Comput 14(6):842–864

    Google Scholar 

  • Stoean R, Stoean C, Lupsor M, Stefanescu H, Badea R (2011) Evolutionary-driven support vector machines for determining the degree of liver fibrosis in chronic hepatitis C. Artif Intell Med 51:53–65. ISSN 0933-3657

    Google Scholar 

  • Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359. ISSN 09255001. doi:10.1023/A:1008202821328

  • Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. In Proceedings of the IEEE congress on evolutionary computation. IEEE Press, pp 325–331

    Google Scholar 

  • Talbi E-G (2009) Metaheuristics: from design to implementation, vol 74. Wiley, Hoboken

    Google Scholar 

  • Thander B, Sircar A, Karmakar GP (2014) Hydrocarbon resource estimation: a stochastic approach. J Pet Explor Prod Technol 1–8

    Google Scholar 

  • Tronicke J, Paasche H, Böniger U (2012) Crosshole traveltime tomography using particle swarm optimization: a near-surface field example. Geophysics 77(1):R19–R32

    Google Scholar 

  • Turney P (1995) Cost-sensitive classification: empirical evaluation of a hybrid genetic decision tree induction algorithm. J Artif Intell Res 2:369–409

    Google Scholar 

  • Voß S (2001) Meta-heuristics: the state of the art. In: Local search for planning and scheduling. Springer, Berlin, pp 1–23

    Google Scholar 

  • Wang L, Wang X, Fu J, Zhen L (2008) A novel probability binary particle swarm optimization algorithm and its application. J Softw 3(9):28–35

    Google Scholar 

  • Whitley Darrell, Rana Soraya, Heckendorn Robert B (1998) The island model genetic algorithm: on separability, population size and convergence. J Comput Inf Technol 7:33–47

    Google Scholar 

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Comput 1(1):67–82

    Google Scholar 

  • Zaharie D (2005) Density based clustering with crowding differential evolution. In: International symposium on symbolic and numeric algorithms for scientific computing, pp 343–350

    Google Scholar 

  • Zaharie D (2007) A comparative analysis of crossover variants in differential evolution. In: Proceedings of IMCSIT 2007, pp 171–181

    Google Scholar 

  • Zangeneh H, Jamshidi S, Soltanieh M (2013) Coupled optimization of enhanced gas recovery and carbon dioxide sequestration in natural gas reservoirs: case study in a real gas field in the south of Iran. Int J Greenhouse Gas Control 17:515–522

    Article  Google Scholar 

  • Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8:173–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Elena Breaban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luchian, H., Breaban, M.E., Bautu, A. (2015). On Meta-heuristics in Optimization and Data Analysis. Application to Geosciences. In: Cranganu, C., Luchian, H., Breaban, M. (eds) Artificial Intelligent Approaches in Petroleum Geosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-16531-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16531-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16530-1

  • Online ISBN: 978-3-319-16531-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics