Advertisement

Basic Reliability Structures of Complex Technical Systems

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 354)

Abstract

In the paper the basic reliability structures of complex technical systems were described. Selected models of the reliability structure were presented. This original paper is a proposition of using reliability structures and based on them algorithms to ensure better diagnostics, maintenance and control of complex technical systems. Some practical examples of using reliability structures were indicated. The presented structures can be put into use in human-machine interfaces to inform operators about the current system condition and to automate some engineering processes and procedures concerning the system reliability.

Keywords

HMI (Human-Machine Interface) reliability structures fault detection diagnostics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chybowski, L.: Tendencje rozwojowe w ocenie waznosci elementow i grup elementow w strukturze niezawodnosciowej systemow. Studia i Materia y Polskiego Stowarzyszenia Zarz dzania Wiedz 45, 77–86 (2011) (in Polish)Google Scholar
  2. 2.
    Chybowski, L.: The problems of modeling the reliability structure of the complex technical system on the basis of a steam-water system of the engine room. Management Systems in Production Engineering 2(6), 12–17 (2012)Google Scholar
  3. 3.
    Chybowski, L.: Qualitative and Quantitative Multi-Criteria Models of the Importance of the Components in Reliability Structure of a Complex Technical System. Journal of KONBIN 24(4), 33–48 (2012)Google Scholar
  4. 4.
    Chybowski, L.: Safety criterion in assessing the importance of an element in the complex technological system reliability structure. Management Systems in Production Engineering 5(1), 10–13 (2012)Google Scholar
  5. 5.
    Chybowski, L., Idziaszczyk, D., Wisnicki, B.: A Comparative Components Importance analysis of A Complex Technical System with The Use of Different Importance Measures. Systems Supporting Production engineering. Review of Problems and Solutions (ed. J. Kazmierczak). P.A. NOVA, Gliwice 23-33 (2014)Google Scholar
  6. 6.
    Chybowski, L.: Components Importance Analysis in Complex Technical Systems. ITEE Radom 2014 (in Polish) ISBN: 978-83-7789-309-8Google Scholar
  7. 7.
    Chybowski, L., Laskowski, R., Gawdziska, K.: An overview of systems supplying water into the combustion chamber of diesel engines to decrease the amount of nitrogen oxides in exhaust gas. Journal of Marine Science and Technology. Springer, Tokyo (2015) doi:10.1007/s00773-015-0303-8Google Scholar
  8. 8.
    Karpinski, J., Korczak, E.: Metody oceny niezawodnosci dwustanowych systemow technicznych. Instytut Bada Systemowych PAN, pp. 162-165. Omnitech Press, Warszawa (1990) (in Polish)Google Scholar
  9. 9.
    Montewka, J., Ehlers, S., Goerlandt, F., Hinz, T., Tabri, K., Kujala, P.: A framework for risk assessment for maritime transportation systems–A case study for open sea collisions involving RoPax vessels. Reliability Engineering and System Safety 124, 142–157 (2014)CrossRefGoogle Scholar
  10. 10.
    Prazewska, M., Korczak, E., Zaremba, M., Tuszynska, J., Tuszynski, J.: Niezawodnosc urz...dzen elektronicznych. WKi, Warszawa (1987)Google Scholar
  11. 11.
    Inzynieria niezawodnosci poradnik. Praca zbiorowa pod red. J. Migdalskiego. ATR Bydgoszcz; ZETOM, Warszawa, in Polish (1992)Google Scholar
  12. 12.
    Karlinski, J., Ptak, M., Dzialak, P.: Simulation tests of roll-over protection structure. Archives of Civil and Mechanical Engineering 13(1), 57–63 (2013)CrossRefGoogle Scholar
  13. 13.
    Ptak, M., Rusinski, E., Karlinski, J., Dragan, S.: Evaluation of kinematics of SUV to pedestrian impact - lower leg impactor and dummy approach. Archives of Civil and Mechanical Engineering 12(1), 68–73 (2012)CrossRefGoogle Scholar
  14. 14.
    System Analysis Reference. System Reliability, Maintainability, Availability, Throughput and Optimization Analysis. ReliaSoft Publishing, Tucson (2007)Google Scholar
  15. 15.
    Zalewski, R., Pyrz, M.: Experimental study and modeling of polymer granular structures submitted to internal underpressure. Mechanics of Materials 57, 75–85 (2013)CrossRefGoogle Scholar
  16. 16.
    Zolkiewski, S.: Dynamic Flexibility of Complex Damped Systems Vibrating Transversally in Transportation. Solid State Phenomena 164, 339–342 (2010)CrossRefGoogle Scholar
  17. 17.
    Zolkiewski, S.: Numerical Application for Dynamic Analysis of Rod and Beam Systems in Transportation. Solid State Phenomena 164, 343–348 (2010)CrossRefGoogle Scholar
  18. 18.
    Zolkiewski, S.: Attenuation-frequency Characteristics of Beam Systems in Spatial Motion. Solid State Phenomena 164, 349–354 (2010)CrossRefGoogle Scholar
  19. 19.
    Zolkiewski, S.: Damped Vibrations Problem of Beams Fixed on the Rotational Disk. International Journal of Bifurcation and Chaos 21(10), 3033–3041 (2011)CrossRefMATHGoogle Scholar
  20. 20.
    Zolkiewski, S.: Testing composite materials connected in bolt joints. Journal of Vibroengineering 13(4), 817–822 (2011)Google Scholar
  21. 21.
    Zolkiewski, S.: Dynamic flexibility of the supported-clamped beam in transportation. Journal of Vibroengineering 13(4), 810–816 (2011)Google Scholar
  22. 22.
    Zolkiewski, S.: Vibrations of beams with a variable cross-section fixed on rotational rigid disks. Latin American Journal of Solids and Structures 10, 39–57 (2013)CrossRefGoogle Scholar
  23. 23.
    Zolkiewski, S.: Diagnostics and transversal vibrations control of rotating beam by means of Campbell diagrams. Key Engineering Materials 588, 91–100 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Faculty of Marine EngineeringMaritime University of SzczecinSzczecinPoland
  2. 2.Institute of Engineering Processes Automation and Integrated Manufacturing SystemsSilesian University of TechnologyGliwicePoland

Personalised recommendations