New Controllable Sound Absorbers Made of Vacuum Packed Particles

  • Zalewski RobertEmail author
  • Rutkowski Michał
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 354)


This article reveals a part of experimental research performed on Special Granular Structures (SGS). These structures have some features that are common to smart materials. Authors earlier papers from last decade were focused mainly on research and modeling of the mechanics of the discussed materials. Possibilities of changing the physical properties of granular materials urged the authors to try and test experimentally if the acoustic parameters of granular structures may also be controlled by the underpressure parameter. A series of laboratory tests regarding the influence of selected parameters on the sound absorption coefficient of SGS prove that there is a simple way of controlling mentioned the acoustic characteristics of tested structures. This unique feature enables their usage as a part of multi-later absorbing structures with variable characteristics.


special granular structures absorption coefficient controllable sound absorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allard, J.F., Atalla, N.: Propagation of sound in porous media. Wiley (2009)Google Scholar
  2. 2.
    Attenborough, K.: Acoustical characteristics of rigid fibrous absorbents and granular materials. J. Acoust. Soc. Am. 73, 785–799 (1983)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bajkowski, J., Jasiński, M., Mączak, J., Radkowski, S., Zalewski, R.: The active magnetorheological support as an element of damping of vibrations transferred from the ground to large-scale structure supports. Key Engineering Materials 518, 350–357 (2012)CrossRefGoogle Scholar
  4. 4.
    Biot, M.A.: Theory of elastic waves in a fluid porous solid I, II. J. Acoust. Soc. Am. 28, 168–178 (1956)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Ersoy, S., Küçük, H.: Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties. Applied Acoustics 70, 215–220 (2009)CrossRefGoogle Scholar
  6. 6.
    Fatima, S., Mohanty, A.R.: Acoustical and fire-retardant properties of jute composite materials. Applied Acoustics 72, 108–114 (2011)CrossRefGoogle Scholar
  7. 7.
    Hong, Z., Bo, L., Guangsu, H., Jia, H.: A novel composite sound absorber with recycled rubber particles. Journal of Sound and Vibration 304, 400–406 (2007)CrossRefGoogle Scholar
  8. 8.
    PN EN-ISO 10534-2: Determination of sound absorption coefficient and impedance in impedance tubesGoogle Scholar
  9. 9.
    Pyrz, M., Zalewski, R.: Modeling of granular media submitted to internal underpressure. Mech. Res. Commun. 37, 141–144 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Sikora, J.: Investigations of sound absorption coefficient of granular materials. Czasopismo Techniczne 1-M/2007 (2007)Google Scholar
  11. 11.
    Sikora, J., Turkiewicz, J.: Experimental determination of sound absorbing coefficient for selected granular materials. Mechanics 28, 26–30 (2009)Google Scholar
  12. 12.
    Swift, M.J., Briš, P., Horoshenkov, K.V.: Acoustic absorption in recycled rubber granulate. Applied Acoustics 57, 203–212 (1999)CrossRefGoogle Scholar
  13. 13.
    Wilson, D.K.: Simple relaxational models for the acoustical properties of porous media. Applied Acoustics 50, 171–188 (1997)CrossRefGoogle Scholar
  14. 14.
    Zalewski, R.: Constitutive model for special granular structures. Int. J. Non-Linear Mech. 45, 279–285 (2010)CrossRefGoogle Scholar
  15. 15.
    Zalewski, R., Pyrz, M.: Modeling and parameter identification of granular plastomer conglomerate submitted to internal underpressure. Engineering Structures 32, 2424–2431 (2010)CrossRefGoogle Scholar
  16. 16.
    Zalewski, R., Pyrz, M.: Experimental study and modeling of polymer granular structures submitted to internal underpressure. Mechanics of Materials 57, 75–85 (2013)CrossRefGoogle Scholar
  17. 17.
    Żółkiewski, S.: Testing composite materials connected in bolt joints. Journal of Vibroengineering 13, 817–822 (2011)Google Scholar
  18. 18.
    Żółkiewski, S.: Damped Vibrations Problem Of Beams Fixed On The Rotational Disk. International Journal of Bifurcation and Chaos 21, 3033–3041 (2011)CrossRefzbMATHGoogle Scholar
  19. 19.
    Ptak, M., Rusiński, E., Karliński, J., Dragan, S.: Evaluation of kinematics of SUV to pedestrian impact - lower leg impactor and dummy approach. Archives of Civil and Mechanical Engineering 12, 68–73 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Machines Design FundamentalsWarsawPoland

Personalised recommendations