Advertisement

Predicting Plateau Pressure in Intensive Medicine for Ventilated Patients

  • Sérgio OliveiraEmail author
  • Filipe Portela
  • Manuel Filipe Santos
  • José Machado
  • António Abelha
  • Álvaro Silva
  • Fernando Rua
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 354)

Abstract

Barotrauma is identified as one of the leading diseases in Ventilated Patients. This type of problem is most common in the Intensive Care Units. In order to prevent this problem the use of Data Mining (DM) can be useful for predicting their occurrence. The main goal is to predict the occurence of Barotrauma in order to support the health professionals taking necessary precautions. In a first step intensivists identified the Plateau Pressure values as a possible cause of Barotrauma. Through this study DM models (classification) where induced for predicting the Plateau Pressure class (>=30 cm H 2 O) in a real environment and using real data. The present study explored and assessed the possibility of predicting the Plateau pressure class with high accuracies. The dataset used only contained data provided by the ventilators. The best models are able to predict the Plateau Pressure with an accuracy ranging from 95.52% to 98.71%.

Keywords

Barotrauma Plateau Pressure Intensive Medicine Data Mining INTCare Mechanical Ventilation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Santos, M., Azevedo, C.: Data Mining Descoberta do conhecimento em base de dados. FCA - Editora de Informática, Lda (2005)Google Scholar
  2. 2.
    Santos, M., Boa, M., Portela, F., Silva, Á., Rua, F.: Real-time prediction of organ failure and outcome in intensive medicine. In: 2010 5th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6 (2010)Google Scholar
  3. 3.
    Koh, H., Tan, G.: Data mining applications in healthcare. J. Healthc. Inf. Manag. 19(2), 64–72 (2005)Google Scholar
  4. 4.
    Anzueto, A., Frutos-Vivar, F., Esteban, A., Alía, I., Brochard, L., Stewart, T., Benito, S., Tobin, M.J., Elizalde, J., Palizas, F., David, C.M., Pimentel, J., González, M., Soto, L., D’Empaire, G., Pelosi, P.: Incidence, risk factors and outcome of barotrauma in mechanically ventilated patients. Intensive Care Med. 30(4), 612–619 (2004)CrossRefGoogle Scholar
  5. 5.
    Al-Rawas, N., Banner, M.J., Euliano, N.R., Tams, C.G., Brown, J., Martin, A.D., Gabrielli, A.: Expiratory time constant for determinations of plateau pressure, respiratory system compliance, and total resistance. Crit. Care 17(1), R23 (2013)CrossRefGoogle Scholar
  6. 6.
    Boussarsar, M., Thierry, G., Jaber, S., Roudot-Thoraval, F., Lemaire, F., Brochard, L.: Relationship between ventilatory settings and barotrauma in the acute respiratory distress syndrome. Intensive Care Med. 28(4), 406–413 (2002)CrossRefGoogle Scholar
  7. 7.
    Gammon, R.B., Shin, M.S., Buchalter, S.E.: Pulmonary barotrauma in mechanical ventilation. Patterns and risk factors. Chest 102(2), 568–572 (1992)CrossRefGoogle Scholar
  8. 8.
    Portela, F., Santos, M.F., Machado, J., Abelha, A., Silva, Á., Rua, F.: Pervasive and intelligent decision support in intensive medicine – the complete picture. In: Bursa, M., Khuri, S., Renda, M.E. (eds.) ITBAM 2014. LNCS, vol. 8649, pp. 87–102. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  9. 9.
    Turban, E., Sharda, R., Delen, D.: Decision Support and Business Intelligence Systems, 9th edn. Prentice Hall (2011)Google Scholar
  10. 10.
    Torgo, L.: Data Mining with R: Learning with Case Studies. CRC Press - Taylor & Francis Group (2011)Google Scholar
  11. 11.
    Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F.: Misc Functions of the Department of Statistics (e1071) (2012)Google Scholar
  12. 12.
    Cortez, P.: Simpler use of data mining methods (e.g. NN and SVM) in classification and regression (2013)Google Scholar
  13. 13.
    Witten, I., Frank, E., Hall, M.: Data Mining Pratical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann (2011)Google Scholar
  14. 14.
    Kantardzic, M.: Data Mining Concepts, Models, Methods, and Algorithms, 2nd edn. Wiley - IEEE Press (2011)Google Scholar
  15. 15.
    Ben-Hur, A., Weston, J.: A User’s Guide to Support Vector Machines. In: Carugo, O., Eisenhaber, F. (eds.) Data Mining Techniques for the Life Sciences. Humana Press (2010)Google Scholar
  16. 16.
    Han, J., Kamber, M., Pei, J.: Data Mining Concepts and Techniques, 3rd edn. Morgan Kaufmann (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sérgio Oliveira
    • 1
    Email author
  • Filipe Portela
    • 1
  • Manuel Filipe Santos
    • 1
  • José Machado
    • 1
  • António Abelha
    • 1
  • Álvaro Silva
    • 2
  • Fernando Rua
    • 2
  1. 1.Algoritmi CentreUniversity of MinhoBragaPortugal
  2. 2.Intensive Care UnitCentro Hospitalar do PortoPortoPortugal

Personalised recommendations