Skip to main content

Data Collection, Control, and Sample Size

  • Chapter
Structural Equation Models

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 22))

Abstract

Many questions in social sciences can only be addressed through individual perceptions, impressions, and judgments. A consumer’s willingness to pay for a product or service is a noisy signal, and the consumer has no obligation to follow through on a purchase intent, no matter how much the researcher might like to infer that “intention” is “action.” Such inherently unobservable constructs need to be modeled as a latent variable. Personal statements of intent, whether they are for purchases, good deeds, or other promises, can only be considered rough indicators; researchers like them because they are cheap and easy to collect by questioning the individual. But like confessions and New Year’s resolutions, intentions are pliable and yielding, and often mendacious. Psychologists have created improved polygraph protocols involving such questions over nearly a century; yet polygraph evidence is still not admissible in court. Obtaining truthful and accurate data from surveys and questionnaires is challenging and the quality of information is invariably lacking. Latent constructs that are of actual interest—ones that help us build theory—are often unobservable. The only way to understand them is through objective measurement of related constructs—the indicator variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \( o\left({n}^{-1}\right) \) convergence implies that for the remaining terms v(n) go to zero faster than \( {n}^{-1} \); \( nv(n)\underset{n\to \infty }{\to }0 \).

References

  • Balakrishnan, N., & Rao, C. R. (1998). Order statistics: Applications (Handbook of statistics, Vol. 17). New York, NY: Elsevier.

    MATH  Google Scholar 

  • Barclay, D. W., Higgins, C., & Thompson, R. (1995). The partial least squares (PLS) approach to causal modeling: Personal computer adaptation and use as an illustration. Technology Studies, 2(2), 285–309.

    Google Scholar 

  • Bentler, P. M. (1989). EQS, structural equations, program manual, program version 3.0 (p. 6). Los Angeles, CA: BMDP Statistical Software.

    Google Scholar 

  • Bollen, K. A. (1989). Structural equations with latent variables (p. 268). New York, NY: Wiley.

    Book  MATH  Google Scholar 

  • Boomsma, A. (1982a). Robustness of LISREL against small sample sizes in factor analysis models. In K. G. Joreskog & H. Wold (Eds.), Systems under indirect observations, causality, structure, prediction (Part 1) (pp. 149–173). Amsterdam, The Netherlands: North Holland.

    Google Scholar 

  • Boomsma, A. (1982b). The robustness of LISREL against small sample sizes in factor analysis models. In K. G. Jöreskog & H. Wold (Eds.), Systems under indirect observation: Causality, structure, prediction (Vol. 149, pp. 149–173). Amsterdam, The Netherlands: North-Holland.

    Google Scholar 

  • Brand, A., Bradley, M. T., Best, L. A., & Stoica, G. (2008). Accuracy of effect size estimates from published psychological research. Perceptual and Motor Skills, 106(2), 645–649.

    Article  Google Scholar 

  • Browne, M. W., & Cudeck, R. (1989). Single sample cross-validation indices for covariance structures. Multivariate Behavioral Research, 24, 445–455.

    Article  Google Scholar 

  • Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park, CA: Sage.

    Google Scholar 

  • Cattell, R. B. (1966). Handbook of multivariate experimental psychology. Chicago, IL: Rand McNally.

    Google Scholar 

  • Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–336). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Chin, W. W., & Newsted, P. R. (1999). Structural equation modeling analysis with small samples using partial least squares. In R. Hoyle (Ed.), Statistical strategies for small sample research (pp. 307–341). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Cliff, N. (1988). The eigenvalues-greater-than-one rule and the reliability of components. Psychological Bulletin, 103(2), 276.

    Article  Google Scholar 

  • Cochran, W. G. (1977). Sampling techniques (3rd ed.). New York, NY: Wiley.

    MATH  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

    MATH  Google Scholar 

  • Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159.

    Article  Google Scholar 

  • Copas, J. B., & Li, H. G. (1997). Inference for non-random samples. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 59(1), 55–95.

    Article  MATH  MathSciNet  Google Scholar 

  • Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52(4), 281.

    Article  Google Scholar 

  • Dhrymes, P. J. (1970). Econometrics—Statistical foundations and applications (p. 53). New York, NY: Evanston.

    Google Scholar 

  • Dijkstra, T. (1983). Some comments on maximum likelihood and partial least squares methods. Journal of Econometrics, 22(1), 67–90.

    Article  MATH  MathSciNet  Google Scholar 

  • Ding, L., Belicer, W. F., & Harlow, L. L. (1995). The effects of estimation methods, number of indicators per factor and improper solutions on structural equation modeling fit indices. Structural Equation Modeling, 2, 119–144.

    Article  Google Scholar 

  • Fava, J. L., & Velicer, W. F. (1992a). An empirical comparison of factor, image, component, and scale scores. Multivariate Behavioral Research, 27(3), 301–322.

    Article  Google Scholar 

  • Fava, J. L., & Velicer, W. F. (1992b). The effects of overextraction on factor and component analysis. Multivariate Behavioral Research, 27(3), 387–415.

    Article  Google Scholar 

  • Fèhèr, K. (1989). Comparison of LISREL and PLS estimation methods in latent variable models. Introducing latent variables into econometric models (Manuscript SFB, Vol. 303). Bonn, Germany: University of Bonn.

    Google Scholar 

  • Fisher, R. A. (1921). On the ‘probable error’ of a coefficient of correlation deduced from a small sample. Metron, 1, 3–32.

    Google Scholar 

  • Fisher, R. A. (1935). The design of experiments. Edinburgh, UK: Oliver & Boyd.

    Google Scholar 

  • Fisher, R. A. (1990). Statistical methods, experimental design, and scientific inference. New York, NY: Oxford University Press.

    MATH  Google Scholar 

  • Ford, E. D. (2000). Scientific method for ecological research. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Friedman, M. (1953). Essays in positive economics. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Gerbing, D. W., & Anderson, J. C. (1985). The effects of sampling error and model characteristics on parameter estimation for maximum likelihood confirmatory factor analysis. Multivariate Behavioral Research, 20, 255–271.

    Article  Google Scholar 

  • Geweke, J. F., & Singleton, K. J. (1980). Interpreting the likelihood ratio statistic in factor models when sample size is small. Journal of the American Statistical Association, 7(369), 133–137.

    Article  Google Scholar 

  • Gibbons, J. D., & Chakraborti, S. (1992). Nonparametric statistical inference (3rd ed.). New York, NY: Marcel Dekker.

    MATH  Google Scholar 

  • Goodhue, D., Lewis, W., & Thompson, R. (2006). PLS, small sample size, and statistical power in MIS Research, HICSS (Vol. 8, p. 202b). Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS‘06).

    Google Scholar 

  • Goodhue, D., William, L., & Thompson, R. (2007). Statistical power in analyzing interaction effects: Questioning the advantage of PLS with product indicators (research note). Information Systems Research, 18(2), 211–227.

    Article  Google Scholar 

  • Hea, Q., & Nagarajab, H. N. (2009). Correlation estimation using concomitants of order statistics from bivariate normal samples. Communications in Statistics - Theory and Methods, 38(12), 2003–2015.

    Article  MathSciNet  Google Scholar 

  • Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution. Annals of Mathematical Statistics, 19, 293–325.

    Article  MATH  MathSciNet  Google Scholar 

  • Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 32(4), 443–482.

    Article  MATH  MathSciNet  Google Scholar 

  • Jöreskog, K. G. (1970). A general method for analysis of covariance structures. Biometrika, 57, 239–251.

    Article  MATH  MathSciNet  Google Scholar 

  • Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8 user’s reference guide. Chicago, IL: Scientific Software International.

    Google Scholar 

  • Joreskog, K. G., Sorbom, D., & Magidson, J. (1979). Advances in factor analysis and structural equation models. Cambridge, MA: Abt Books.

    Google Scholar 

  • Kahai, S. S., & Cooper, R. B. (2003). Exploring the core concepts of media richness theory: The impact of cue multiplicity and feedback immediacy on decision quality. Journal of Management Information Systems, 20(1), 263–299.

    Google Scholar 

  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141–151.

    Article  Google Scholar 

  • Kaiser, F. H. (1991). Coefficient alpha for a principal component and the Kaiser-Guttman rule. Psychological Reports, 68(3), 855–858.

    Article  Google Scholar 

  • Kaiser, H. F. (1992). On Cliff’s formula, the Kaiser-Guttman rule, and the number of factors. Perceptual and Motor Skills, 74(2), 595–598.

    Article  Google Scholar 

  • Kendall, M., & Gibbons, J. D. (1990). Rank correlation methods (5th ed.). New York, NY: Oxford University Press.

    MATH  Google Scholar 

  • Kish, L. (1995). Survey sampling. New York, NY: Wiley.

    MATH  Google Scholar 

  • Koopmans, T. C. (1951). Analysis of production as an efficient combination of activities. Activity Analysis of Production and Allocation, 13, 33–37.

    MathSciNet  Google Scholar 

  • Koopmans, T. C. (1957). Three essays on the state of economic science (Vol. 21). New York, NY: McGraw-Hill.

    Google Scholar 

  • Koopmans, T. C. (1963). Appendix to ‘On the concept of optimal economic growth’. New Haven, CT: Cowles Foundation for Research in Economics, Yale University.

    Google Scholar 

  • Lauro, C., & Vinzi, V. E. (2002). Some contributions to PLS path modeling and a system for the European customer satisfaction (Atti della XL1 riunione scientifica SIS). Milano, Italy: Universita di Milano Bicocca.

    Google Scholar 

  • Leamer, E. E. (1978). Specification searches. New York, NY: Wiley.

    MATH  Google Scholar 

  • Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 22, 55.

    Google Scholar 

  • Likert, R., Roslow, S., & Murphy, G. (1934). A simple and reliable method of scoring the Thurstone attitude scales. Journal of Social Psychology, 5(2), 228–238.

    Article  Google Scholar 

  • Lohr, S. L. (1999). Sampling: Design and analysis. Pacific Grove, CA: Duxbury.

    MATH  Google Scholar 

  • Mari, D. D., & Kotz, S. (2001). Correlation and dependence. London: Imperial College Press.

    Book  MATH  Google Scholar 

  • Marsh, H. W., & Bailey, M. (1991). Confirmatory factor analyses of multitrait-multimethod data: A comparison of alternative models. Applied Psychological Measurement, 15(1), 47–70.

    Article  Google Scholar 

  • Marsh, H. W., Balla, J. R., & Hau, K.-T. (1996). An evaluation of incremental fit indices: A clarification of mathematical and empirical properties. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling: Issues and techniques (pp. 315–353). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness of fit indexes in confirmatory factor analysis: The effect of sample size. Psychological Bulletin, 103, 391–410.

    Article  Google Scholar 

  • Marsh, H. W., Hau, K.-T., Balla, J. R., & Grayson, D. (1998). Is more ever too much? The number of indicators per factor in confirmatory factor analysis. Multivariate Behavioral Research, 33, 181–220.

    Article  Google Scholar 

  • Merton, R. K. (1988). The Matthew effect in science, II: Cumulative advantage and the symbolism of intellectual property. Isis, 79, 606–623.

    Article  Google Scholar 

  • Nakagawa, S., & Cuthill, I. C. (2007). Effect size, confidence interval and statistical significance: A practical guide for biologists. Biological Reviews of the Cambridge Philosophical Society, 82, 591–605.

    Article  Google Scholar 

  • Nunnally, J. C. (1967). Psychometric theory (p. 355). New York, NY: McGraw-Hill.

    Google Scholar 

  • Podsakoff, P. M., & Organ, D. W. (1986). Self-reports in organization research: Problems and prospects. Journal of Management, 12, 531–544.

    Article  Google Scholar 

  • Raspe, R. E. (2004). The surprising adventures of Baron Munchausen. Whitefish, MT: Kessinger Pub.

    Google Scholar 

  • Schechtman, E., & Yitzhaki, S. (1987). A measure of association based on Gini’s mean difference. Communications in Statistics - Theory and Methods, 16, 207–231.

    Article  MATH  MathSciNet  Google Scholar 

  • Schneeweiß, H. (1990). Models with latent variables: LISREL versus PLS. Contemporary Mathematics, 112, 33–40.

    Article  Google Scholar 

  • Schneeweiß, H. (1991). Models with latent variables: LISREL versus PLS. Statistica Neerlandica, 45, 145–157.

    Article  Google Scholar 

  • Schneeweiß, H. (1993). Consistency at large in models with latent variables. In K. Hagen, D. J. Barthdomew, & M. Deistler (Eds.), Statistical modelling and latent variables (pp. 299–320). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Shevlyakov, G. L., & Vilchevski, N. O. (2002). Robustness in data analysis: Criteria and methods (Modern probability and statistics). Utrecht, The Netherlands: VSP.

    Google Scholar 

  • Snedecor, G. W., & Cochran, W. G. (1989). Statistical methods (8th ed.). Ames, IA: Iowa University Press.

    MATH  Google Scholar 

  • Soper, D. (2012). A priori sample size calculator for structural equation models. http://www.danielsoper.com/statcalc3/calc.aspx?id=89

  • Stuart, A., & Keith Ord, J. (1987). Kendall’s advanced theory of statistics. New York, NY: Oxford University Press.

    MATH  Google Scholar 

  • Tabachnick, B. G., & Fidell, L. S. (1989). Using multivariate statistics. New York, NY: Harper and Row.

    Google Scholar 

  • Tanaka, J. S. (1987). “How big is big enough?”: Sample size and goodness of fit in structural equation models with latent variables. Child Development, 58, 134–146.

    Article  Google Scholar 

  • Thomas, D. R., Lu, I. R. R., & Cedzynski, M. (2005). Partial least squares: A critical review and a potential alternative. Proceedings of the Annual Conference of Administrative Sciences Association of Canada, Management Science Division, Toronto.

    Google Scholar 

  • Velicer, W. F., & Fava, J. L. (1998). Affects of variable and subject sampling on factor pattern recovery. Psychological Methods, 3(2), 231.

    Article  Google Scholar 

  • Westland, J. C. (2010). Lower bounds on sample size in structural equation modeling. Electronic Commerce Research and Applications, 9(6), 476–487.

    Article  Google Scholar 

  • Westland, J. C., & See-To, W. K. (2007). The short-run price-performance dynamics of microcomputer technologies. Research Policy, 36(5), 591–604.

    Article  Google Scholar 

  • Wilkinson, L., & APA Task Force on Statistical Inference. (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54, 594–604.

    Article  Google Scholar 

  • Wolfram, S. (2002). A new kind of science (Vol. 5). Champaign, IL: Wolfram media.

    MATH  Google Scholar 

  • Xu, W., Hung, Y. S., Niranjan, M., & Shen, M. (2010). Asymptotic mean and variance of Gini correlation for bivariate normal samples. IEEE Transactions on Signal Processing, 58(2), 522–534.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Westland, J.C. (2015). Data Collection, Control, and Sample Size. In: Structural Equation Models. Studies in Systems, Decision and Control, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-16507-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16507-3_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16506-6

  • Online ISBN: 978-3-319-16507-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics