Skip to main content

Feature Discovery by Deep Learning for Aesthetic Analysis of Evolved Abstract Images

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9027)


We investigated the ability of a Deep Belief Network with logistic nodes, trained unsupervised by Contrastive Divergence, to discover features of evolved abstract art images. Two Restricted Boltzmann Machine models were trained independently on low and high aesthetic class images. The receptive fields (filters) of both models were compared by visual inspection. Roughly 10 % of these filters in the high aesthetic model approximated the form of the high aesthetic training images. The remaining 90 % of filters in the high aesthetic model and all filters in the low aesthetic model appeared noise like. The form of discovered filters was not consistent with the Gabor filter like forms discovered for MNIST training data, possibly revealing an interesting property of the evolved abstract training images. We joined the datasets and trained a Restricted Boltzmann Machine finding that roughly 30 % of the filters approximate the form of the high aesthetic input images. We trained a 10 layer Deep Belief Network on the joint dataset and used the output activities at each layer as training data for traditional classifiers (decision tree and random forest). The highest classification accuracy from learned features (84 %) was achieved at the second hidden layer, indicating that the features discovered by our Deep Learning approach have discriminative power. Above the second hidden layer, classification accuracy decreases.


  • Computational aesthetics
  • Deep learning
  • Evolved abstract images

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-16498-4_3
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-16498-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.


  1. 1.

    We arbitrarily decided 10 layers are sufficient to satisfactorily show any trend in classification accuracy with depth.

  2. 2.

    WEKA J48 and RandomForest classifiers were run with all default settings and 10 fold cross validation.


  1. Birkhoff, G.D.: Aesthetic Measure. Mass, Cambridge (1933)

    CrossRef  MATH  Google Scholar 

  2. Campbell, A., Ciesielski, V., Trist, K.: A self organizing map based method for understanding features associated with high aesthetic value evolved abstract images. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2274–2281. IEEE (2014)

    Google Scholar 

  3. Ciesielski, V., Barile, P., Trist, K.: Finding image features associated with high Aesthetic value by machine learning. In: Machado, P., McDermott, J., Carballal, A. (eds.) EvoMUSART 2013. LNCS, vol. 7834, pp. 47–58. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  4. Datta, R.: Semantics and aesthetics inference for image search: statistical learning approaches. Pennsylvania State University (2009)

    Google Scholar 

  5. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying Aesthetics in photographic images using a computational approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 288–301. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  6. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep network. Dept. IRO, Université de Montréal, Technical report (2009)

    Google Scholar 

  7. Fischer, A., Igel, C.: Training restricted boltzmann machines: An introduction. Pattern Recogn. 47(1), 25–39 (2014)

    CrossRef  Google Scholar 

  8. Galanter, P.: Computational aesthetic evaluation: past and future. In: McCormack, J., d’Inverno, M. (eds.) Computers and Creativity, pp. 255–293. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  9. Ginosar, S., Haas, D., Brown, T., Malik, J.: Detecting people in cubist art. arXiv preprint arXiv:1409.6235 (2014)

  10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1), 10–18 (2009)

    CrossRef  Google Scholar 

  11. Hinton, G.: A practical guide to training restricted Boltzmann machines. Momentum 9(1), 926 (2010)

    Google Scholar 

  12. Hinton, G., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Geoffrey, E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    CrossRef  MATH  Google Scholar 

  14. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

  15. Hoenig, F.: Defining computational aesthetics. In: Neumann, L., Sbert, M., Gooch, B., Purgathofer, W. (eds.) Computational Aesthetics, pp. 13–18. Eurographics Association, London (2005)

    Google Scholar 

  16. Ke, Y., Tang, X., Jing, F.: The design of high-level features for photo quality assessment. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 419–426. IEEE (2006)

    Google Scholar 

  17. LeCun, Y., Cortes, C.: The mnist database of handwritten digits (1998)

    Google Scholar 

  18. Lee, H., Ekanadham, C., Ng, A.Y.: Sparse deep belief net model for visual area v2. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, pp. 873–880. MIT Press, Cambridge (2008)

    Google Scholar 

  19. Lu, X., Lin, Z., Jin, H., Yang, J., Wang, J.Z.: Rapid: Rating pictorial aesthetics using deep learning. In: Proceedings of the ACM International Conference on Multimedia, pp. 457–466. ACM (2014)

    Google Scholar 

  20. Machado, P., Cardoso, A.: Generation and evaluation of artworks. In: Proceedings of the 1st European Workshop on Cognitive Modeling, CM’96, pp. 96–39 (2010)

    Google Scholar 

  21. Murray, N., Marchesotti, L., Perronnin, F.: Ava: A large-scale database for aesthetic visual analysis. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2408–2415. IEEE (2012)

    Google Scholar 

  22. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 807–814 (2010)

    Google Scholar 

  23. Reaves, D.: Aesthetic image rating (AIR) algorithm. Ph.D. thesis (2008)

    Google Scholar 

  24. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: 2013 12th International Conference on Document Analysis and Recognition, vol. 2, pp. 958–958. IEEE Computer Society (2003)

    Google Scholar 

  25. Spratt, E.L., Elgammal, A.: Computational beauty: Aesthetic judgment at the intersection of art and science. arXiv preprint arXiv:1410.2488 (2014)

  26. Jost Tobias Springenberg and Martin Riedmiller. Improving deep neural networks with probabilistic maxout units. arXiv preprint arXiv:1312.6116 (2013)

  27. Xu, Q., D’Souza, D., Ciesielski, V.: Evolving images for entertainment. In: Proceedings of the 4th Australasian Conference on Interactive Entertainment, p. 26. RMIT University (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Allan Campbell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Campbell, A., Ciesielksi, V., Qin, A.K. (2015). Feature Discovery by Deep Learning for Aesthetic Analysis of Evolved Abstract Images. In: Johnson, C., Carballal, A., Correia, J. (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design. EvoMUSART 2015. Lecture Notes in Computer Science(), vol 9027. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16497-7

  • Online ISBN: 978-3-319-16498-4

  • eBook Packages: Computer ScienceComputer Science (R0)