Skip to main content

Evolving Diverse Design Populations Using Fitness Sharing and Random Forest Based Fitness Approximation

  • 1083 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9027)

Abstract

A large, diverse design space will contain many non-viable designs. To locate the viable designs we need to have a method of testing the designs and a way to navigate the space. We have shown that using machine learning on artificial data can accurately predict the viability of chairs based on a range of ergonomic considerations. We have also shown that the design space can be explored using an evolutionary algorithm with the predicted viability as a fitness function. We find that this method in conjunction with a fitness sharing technique can maintain a diverse population with many potential viable designs.

Keywords

  • Chair design
  • Generative design
  • Fitness sharing
  • Multimodel evolutionary algorithms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-16498-4_17
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-16498-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Dabbeeru, M.M., Mukerjee, A.: Discovering implicit constraints in design. Artif. Intell. Eng. Des. Anal. Manuf. 25, 57–75 (2011)

    CrossRef  Google Scholar 

  2. Reed, K.: Aesthetic measures for evolutionary vase design. In: Machado, P., McDermott, J., Carballal, S. (eds.) EvoMUSART 2013. LNCS, vol. 7834, pp. 59–71. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  3. Schütze, O., et al.: On the detection of nearly optimal solutions in the context of single-objective space mission design problems. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 225, 1229–1242 (2011)

    CrossRef  Google Scholar 

  4. Deb, K., Saha, A.: Multimodal optimization using a bi-objective evolutionary algorithm. Evol. Comput. 20(1), 27–62 (2012). MIT Press

    CrossRef  Google Scholar 

  5. Črepinšek, M., Liu, S.-H.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 45, 3 (2013)

    Google Scholar 

  6. Xu, K., Zhang, H., Cohen-Or, D., Chen, B.: Fit and diverse: set evolution for inspiring 3D shape galleries. ACM Trans. Graph. 31(4), 57:1–57:10 (2012). Article 57

    CrossRef  Google Scholar 

  7. Kalogerakis, E., Chaudhuri, S., Koller, D., Koltun, V.: A probabilistic model for component-based shape synthesis. ACM Trans. Graph. 31(4), 55:1–55:11 (2012). Article 55

    CrossRef  Google Scholar 

  8. Clune J., Lipson H.: Evolving three-dimensional objects with a generative encoding inspired by developmental biology. In: Proceedings of the European Conference on Artificial Life, pp 141–148 (2011)

    Google Scholar 

  9. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9(1), 3–12 (2005). Springer

    CrossRef  Google Scholar 

  10. Yüksel, A.Ç.: Automatic music generation using evolutionary algorithms and neural networks. In: 2011 International Symposium on Innovations in Intelligent Systems and Applications (INISTA), pp 354–358 (2011)

    Google Scholar 

  11. Hsiao, S.-W., Tsai, H.-C.: Applying a hybrid approach based on fuzzy neural network and genetic algorithm to product form design. Int. J. Ind. Ergon. 35, 411–428 (2005)

    CrossRef  Google Scholar 

  12. Trimble SketchUp. http://www.sketchup.com

  13. Mathworks Matlab. http://uk.mathworks.com/products/matlab/

  14. TU Delft DINED Database. http://dined.io.tudelft.nl/dined/full

  15. Winter, D.A.: Biomechanics and Motor Control of Human Movement, 4th edn. Wiley, New York (2009)

    CrossRef  Google Scholar 

  16. SolidWorks Bearing Load Distribution. http://help.solidworks.com/2015/english/SolidWorks/cworks/c_Bearing_Load_Distribution.htm

  17. Todd, B.A.: Three-dimensional computer model of the human buttocks in vivo. J Rehabil. Res. Dev. 31(2), 111–119 (1994)

    Google Scholar 

  18. Zhu, H.: Modeling of pressure distribution of human body load on an office chair seat. Masters thesis. Department of Mechanical Engineering, Blekinge Institute of Technology (2013)

    Google Scholar 

  19. scikit-learn. http://scikit-learn.org/stable/index.html

  20. Breiman, L., Cutler, A.: Random forests. http://www.stat.berkeley.edu/ ~breiman/RandomForests/cc_home.htm

  21. Yu, X., Gen, M.: Introduction to Evolutionary Algorithms. Decision Engineering. Springer, London (2012)

    Google Scholar 

  22. Umetani, N., Igarashi, T., Mitra, N.J.: Guided exploration of physically valid shapes for furniture design. ACM Trans. Graph. 31(4), 86:1–86:11 (2012). Article 86

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate Reed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Reed, K., Gillies, D.F. (2015). Evolving Diverse Design Populations Using Fitness Sharing and Random Forest Based Fitness Approximation. In: Johnson, C., Carballal, A., Correia, J. (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design. EvoMUSART 2015. Lecture Notes in Computer Science(), vol 9027. Springer, Cham. https://doi.org/10.1007/978-3-319-16498-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16498-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16497-7

  • Online ISBN: 978-3-319-16498-4

  • eBook Packages: Computer ScienceComputer Science (R0)