Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 75))

Abstract

In this chapter we discuss the admissible kinematics of a continuous body in the physical space from a differential geometric point of view, as it is proposed by Epstein and Segev [1, 2]. A major part of the chapter deals with the introduction of the necessary differential geometric concepts. These geometric concepts are then directly applied to the description of a first gradient continuum as a model of a deformable body. Section 2.1 introduces the objects of continuum mechanics, the body and the physical space as manifolds. The idea to regard a body as a smooth manifold originates from Noll [3] and is applied explicitly in [1]. In Sect. 2.2, tangent bundles, vector fields and global flows are defined to formulate the idea of a smooth spatial virtual displacement field. In Sect. 2.3, we introduce the configuration as a mapping between manifolds and discuss the infinite dimensional manifold structure of the set of all differentiable mappings. Furthermore, we introduce pullback tangent bundles which are required to represent elements of the tangent space of the configuration manifold, i.e. virtual displacement fields. In Sect. 2.4, we give a brief introduction to affine connections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Epstein, R. Segev, Differentiable manifolds and the principle of virtual work in continuum mechanics. J. Math. Phys. 21, 1243–1245 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Segev, Forces and the existence of stresses in invariant continuum mechanics. J. Math. Phys. 27(1), 163–170 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. W. Noll, The foundations of classical mechanics in the light of recent advances in continuum mechanics. The Axiomatic Method, With Special Reference to Geometry and Physics (North-Holland Publishing Company, Amsterdam, 1959), pp. 266–281

    Google Scholar 

  4. J.R. Munkres, Topology, 2nd edn. (Prentice Hall, Upper Saddle River, 2000)

    MATH  Google Scholar 

  5. J.M. Lee, Introduction to Smooth Manifolds 2nd edn., Graduate Texts in Mathematics, vol. 218 (Springer, New York, 2012)

    Google Scholar 

  6. L.D. Landau, E.M. Lifshitz, Theory of Elasticity. Course of Theoretical Physics, vol. 7 (Butterworth-Heinemann, Oxford, 1986)

    Google Scholar 

  7. P.W. Michor, Topics in Differential Geometry. Graduate Studies in Mathematics, vol. 93 (American Mathematical Society, Providence, 2008)

    Google Scholar 

  8. W. Kühnel, Differentialgeometrie: Kurven–Flächen–Mannigfaltigkeiten. Aufbaukurs Mathematik, 6th edn. (Springer Spektrum, 2013)

    Google Scholar 

  9. M. Göckeler, T. Schücker, Differential Geometry, Gauge Theories, and Gravity. Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  10. D.J. Saunders, The Geometry of Jet Bundles (Cambridge University Press, Cambridge, 1989)

    Book  MATH  Google Scholar 

  11. D. Husemöller, Fibre Bundles. Graduate Texts in Mathematics, vol. 20 (Springer, New York, 1994)

    Google Scholar 

  12. R.S. Palais, Foundations of Global Analysis (W. A. Benjamin, Inc., Amsterdam, 1968)

    MATH  Google Scholar 

  13. P.W. Michor, Manifolds of Differentiable Mappings (Shiva Publications, Orpington, 1980)

    MATH  Google Scholar 

  14. A. Kriegl, P.W. Michor, The Convenient Setting of Global Analysis. Mathematical Surveys and Monographs, vol. 53 (American Mathematical Society, Providence, 1997)

    Google Scholar 

  15. J. Eells, Jr., On the geometry of function spaces, in Symposium internacional de topología algebraica International symposium on algebraic topology (Universidad Nacional Autónoma de México and UNESCO, Mexico City, 1958), pp. 303–308

    Google Scholar 

  16. J.E. Marsden, Applications of Global Analysis in Mathematical Physics. Mathematical Lecture Series, vol. 2 (Publish or Perish Inc. Berkeley, 1974)

    Google Scholar 

  17. J. Eells Jr, A setting for global analysis. Bull. Am. Math. Soc. 72(5), 751–807 (1966)

    Article  MathSciNet  Google Scholar 

  18. H.I. Eliasson, Geometry of manifolds of maps. J. Differ. Geom. 1(1–2), 169–194 (1967)

    MATH  MathSciNet  Google Scholar 

  19. E. Binz, H.R. Fischer, The manifold of embeddings of a closed manifold. Differential Geometric Methods in Mathematical Physics (Springer, Berlin, 1981), pp. 310–325

    Google Scholar 

  20. E. Binz, J. Sniatycki, H.R. Fischer, Geometry of Classical Fields. North-Holland Mathematics Studies, vol. 154 (Elsevier Science, Amsterdam, 1988)

    Google Scholar 

  21. C. Truesdell, R. Toupin, The classical field theories, in Principles of Classical Mechanics and Field Theory. Encyclopedia of Physics, vol. III/1, ed. by S. Flügge (Springer, Berlin, 1960)

    Google Scholar 

  22. J.C. Simo, J.E. Marsden, P.S. Krishnaprasad, The Hamiltonian structure of nonlinear elasticity: the material and convective representations of solids, rods, and plates. Arch. Ration. Mech. Anal. 104(2), 125–183 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Abraham, J.E. Marsden, T.S. Ratiu, Manifolds, Tensor Analysis, and Applications. Applied Mathematical Sciences, vol. 75 (Spinger, New York, 1988)

    Google Scholar 

  24. D.G. Ebin, J.E. Marsden, Groups of diffeomorphisms and the solution of the classical Euler equations for a perfect fluid. Bull. Am. Math. Soc. 75(5), 962–967, 09 (1969)

    Google Scholar 

  25. R. Abraham, S. Smale, Lectures of Smale on Differential Topology (Columbia University, New York, 1963)

    Google Scholar 

  26. T. Aubin, A Course in Differential Geometry. Graduate Studies in Mathematics, vol. 27 (American Mathematical Society, Providence, 2001)

    Google Scholar 

  27. V.I. Arnold, Mathematical Methods of Classical Mechanics. 2nd edn. Graduate Texts in Mathematics, vol. 60 (Springer, New York, 1989)

    Google Scholar 

  28. R. Abraham, J.E. Marsden, Foundations of Mechanics, 2nd edn. (Addison-Wesley, Reading, 1978)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon R. Eugster .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eugster, S.R. (2015). Kinematics. In: Geometric Continuum Mechanics and Induced Beam Theories. Lecture Notes in Applied and Computational Mechanics, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-319-16495-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16495-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16494-6

  • Online ISBN: 978-3-319-16495-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics