An Efficient and Adaptive Threshold of Volumetric Segmentation

  • Dumitru Dan Burdescu
  • Marius Brezovan
  • Liana Stanescu
  • Cosmin Stoica Spahiu
  • Florin Slabu
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 353)

Abstract

Image segmentation plays a crucial role in effective understanding of digital images. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim of this paper is to present a new and efficient method to detect visual objects from color spatial images. The presented method uses a general-purpose volumetric segmentation algorithm, based on a unified framework that uses a virtual tree-hexagonal structure defined on the set of image voxels.

Keywords

Volumetric Segmentation Graph-based segmentation Adaptive algorithms Threshold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Allène, C., Audibert, J.Y., Couprie, M., Keriven, R.: Some links between extremum spanning forests, watersheds and min-cuts. Image and Vision Computing 28(10), 1460–1471 (2010)CrossRefGoogle Scholar
  3. 3.
    Grundmann, M., Kwatra, V., Han, M., Essa, I.: Efficient hierarchical graph-based video segmentation. In: Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR 2010), pp. 2141–2148 (2010) ISBN 978-1-4244-6984-0Google Scholar
  4. 4.
    Urquhar, R.: Graph theoretical clustering based on limited neighborhood sets. Pattern Recognition 15(3), 173–187 (1982)CrossRefGoogle Scholar
  5. 5.
    Felzenszwalb, P., Huttenlocher, W.: Efficient graph-based image segmentation. International Journal of Computer Vision 59(2), 167–181 (2004)CrossRefGoogle Scholar
  6. 6.
    Guigues, L., Herve, L., Cocquerez, L.P.: The hierarchy of the cocoons of a graph and its application to image segmentation. Pattern Recognition Letters 24(8), 1059–1066 (2003)CrossRefMATHGoogle Scholar
  7. 7.
    Gdalyahu, Y., Weinshall, D., Werman, M.: Self-organization in vision: stochastic clustering for image segmentation, perceptual grouping, and image database organization. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(10), 1053–1074 (2001)CrossRefGoogle Scholar
  8. 8.
    Jermyn, I., Ishikawa, H.: Globally optimal regions and boundaries as minimum ratio weight cycles. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(8), 1075–1088 (2001)CrossRefGoogle Scholar
  9. 9.
    Comaniciu, D., Meer, P.: Robust analysis of feature spaces: color image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)CrossRefGoogle Scholar
  10. 10.
    Burdescu, D., Stanescu, L., Brezovan, M., Stoica Spahiu, C.: Computational Complexity Analysis of the Graph Extraction Algorithm for 3D Segmentation. In: IEEE Tenth World Congress on Services-SERVICES 2014, pp. 462–470 (2014)Google Scholar
  11. 11.
    Burdescu, D.D., Brezovan, M., Stanescu, L., Stoica-Spahiu, C.: A Spatial Segmentation Method. International Journal of Computer Science and Applications, ©Technomathematics Research Foundation 11(1), 75–100 (2014)Google Scholar
  12. 12.
    Stanescu, L., Burdescu, D., Brezovan, M., Mihai, C.G.: Creating New Medical Ontologies for Image Annotation, Springer-Verlag New York Inc.Google Scholar
  13. 13.
    Gijsenij, A., Gevers, T., Lucassen, M.P.: A perceptual comparison of distance measures for color constancy algorithms. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 208–221. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1964)MATHGoogle Scholar
  15. 15.
    Huang, R., Pavlovic, V., Metaxas, D.N.: A tightly coupled region shape framework for 3d, in Medical Image Segmentation. In: IEEE International Symposium on Biomedical Imaging, ISBI 2006 (2006)Google Scholar
  16. 16.
    Martin, D.: An Empirical Approach to Grouping and Segmentation, PhD thesis, University of California, Berkeley (2002)Google Scholar
  17. 17.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of International Conference on Computer Vision, vol. (2), pp. 416–432 (2001)Google Scholar
  18. 18.
    Powers, D.: Evaluation: From precision, recall and F-measure to ROC, formedness, markedness and correlation. Journal of Machine Learning Technologies 2(1), 37–63 (2011)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Dumitru Dan Burdescu
    • 1
  • Marius Brezovan
    • 1
  • Liana Stanescu
    • 1
  • Cosmin Stoica Spahiu
    • 1
  • Florin Slabu
    • 1
  1. 1.Computers and information Technology Department, Faculty of Automatics, Computers and ElectronicsUniversity of CraiovaCraiovaRomania

Personalised recommendations