Skip to main content

isDNA: A Tool for Real-Time Visualization of Plasmid DNA Monte-Carlo Simulations in 3D

  • Conference paper
Bioinformatics and Biomedical Engineering (IWBBIO 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9044))

Included in the following conference series:

Abstract

Computational simulation of plasmid DNA (pDNA) molecules, owning a closed-circular shape, has been a subject of study for many years. Monte-Carlo methods are the most popular family of methods that have been used in pDNA simulations. However, though there are many software tools for assembling and visualizing DNA molecules, none of them allows the user to visualize the course of the simulation in 3D. As far as we know, we present here the first software (called isDNA) allowing the user to visualize 3D MC simulations of pDNA in real-time. This is sustained on an adaptive DNA assembly algorithm that uses Gaussian molecular surfaces of the nucleotides as building blocks, and an efficient deformation algorithm for pDNA’s MC simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raposo, A.N., Gomes, A.J.: 3D molecular assembling of B-DNA sequences using nucleotides as building blocks. Graphical Models 74(4), 244–254 (2012)

    Article  Google Scholar 

  2. Raposo, A.N., Gomes, A.J.P.: Efficient deformation algorithm for plasmid DNA simulations. BMC Bioinformatics 15(1), 301 (2014)

    Article  Google Scholar 

  3. Dickerson, R.E.: Definitions and nomenclature of nucleic acid structure components. Nucleic Acids Research 17(5), 1797–1803 (1989)

    Article  Google Scholar 

  4. Bolshoy, A., McNamara, P., Harrington, R.E., Trifonov, E.N.: Curved dna without a-A: experimental estimation of all 16 dna wedge angles. Proceedings of the National Academy of Sciences 88(6), 2312–2316 (1991)

    Article  Google Scholar 

  5. Dickerson, R.E.: DNA bending: The prevalence of kinkiness and the virtues of normality. Nucleic Acids Research 26(8), 1906–1926 (1998)

    Article  Google Scholar 

  6. Lu, X.J., Olson, W.K.: 3DNA: A software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Research 31(17), 5108–5121 (2003)

    Article  Google Scholar 

  7. Zheng, G., Lu, X.J., Olson, W.K.: Web 3DNA–a web server for the analysis, reconstruction, and visualization of three-dimensional nucleic-acid structures. Nucleic Acids Research 37(web server issue), W240–W246 (2009)

    Google Scholar 

  8. Lavery, R., Sklenar, H.: The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. Journal of Biomolecular Structure and Dynamics 6(1), 63–91 (1988)

    Article  Google Scholar 

  9. Lavery, R., Moakher, M., Maddocks, J.H., Petkeviciute, D., Zakrzewska, K.: Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Research 37(17), 5917–5929 (2009)

    Article  Google Scholar 

  10. Shpigelman, E.S., Trifonov, E.N., Bolshoy, A.: CURVATURE: Software for the analysis of curved DNA. Computer Applications in the Biosciences 9(4), 435–440 (1993)

    Google Scholar 

  11. Macke, T.J., Case, D.A.: 25. In: Modeling Unusual Nucleic Acid Structure, pp. 379–393. American Chemical Society (1998)

    Google Scholar 

  12. Herisson, J., Ferey, N., Gros, P.E., Gherbi, R.: ADN-Viewer: A 3D approach for bioinformatic analyses of large DNA sequences. Cellular and Molecular Biology 52(6), 24–31 (2006)

    Google Scholar 

  13. Hornus, S., Levy, B., Lariviere, D., Fourmentin, E.: Easy DNA modeling and more with GraphiteLifeExplorer. PLoS One 8(1), e53609 (2013)

    Google Scholar 

  14. Salomon-Ferrer, R., Case, D.A., Walker, R.C.: An overview of the AMBER biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science 3(2), 198–210 (2013)

    Google Scholar 

  15. Verdier, P., Stockmayer, W.: Monte Carlo calculations on the dynamics of polymers in dilute solution. The Journal of Chemical Physics 36(1), 227–235 (1962)

    Article  Google Scholar 

  16. Hilhorst, H., Deutch, J.: Analysis of Monte Carlo results on the kinetics of lattice polymer chains with excluded volume. The Journal of Chemical Physics 63(12), 5153–5161 (1975)

    Article  Google Scholar 

  17. Klenin, K., Vologodskii, A., Anshelevich, V., Dykhne, A., Frank-Kamenetskii, M.: Computer simulation of DNA supercoiling. Journal of Molecular Biology 63(3), 413–419 (1991)

    Article  Google Scholar 

  18. Vologodskii, A.V., Levene, S.D., Klenin, K.V., Frank-Kamenetskii, M., Cozzarelli, N.R.: Conformational and thermodynamic properties of supercoiled DNA. Journal of Molecular Biology 227(4), 1224–1243 (1992)

    Article  Google Scholar 

  19. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  20. Raposo, A.N., Queiroz, J.A., Gomes, A.J.P.: Triangulation of molecular surfaces using an isosurface continuation algorithm. In: Proceedings of the 2009 International Conference on Computational Science and its Applications, pp. 145–153. IEEE Computer Society (2009)

    Google Scholar 

  21. Bates, A., Maxwell, A.: DNA Topology, 2nd edn. Oxford University Press (2005)

    Google Scholar 

  22. Kummerle, E.A., Pomplun, E.: A computer-generated supercoiled model of the pUC19 plasmid. European Biophysics Journal 34(1), 13–18 (2005)

    Article  Google Scholar 

  23. Vologodskii, A.: Monte Carlo simulation of DNA topological properties. In: Monastyrsky, M. (ed.) Topology in Molecular Biology. Biological and Medical Physics, Biomedical Engineering, pp. 23–41. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Heywood, J.: Internal Combustion Engine Fundamentals. McGraw-Hill, Inc., New York (1988)

    Google Scholar 

  25. Harris, B.A., Harvey, S.C.: Program for analyzing knots represented by polygonal paths. Journal of Computational Chemistry 20(8), 813–818 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Raposo, A.N., Gomes, A.J.P. (2015). isDNA: A Tool for Real-Time Visualization of Plasmid DNA Monte-Carlo Simulations in 3D. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9044. Springer, Cham. https://doi.org/10.1007/978-3-319-16480-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16480-9_54

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16479-3

  • Online ISBN: 978-3-319-16480-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics