Numerical Investigation of Graph Spectra and Information Interpretability of Eigenvalues

  • Hector Zenil
  • Narsis A. Kiani
  • Jesper Tegnér
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9044)

Abstract

We undertake an extensive numerical investigation of the graph spectra of thousands regular graphs, a set of random Erdös-Rényi graphs, the two most popular types of complex networks and an evolving genetic network by using novel conceptual and experimental tools. Our objective in so doing is to contribute to an understanding of the meaning of the Eigenvalues of a graph relative to its topological and information-theoretic properties. We introduce a technique for identifying the most informative Eigenvalues of evolving networks by comparing graph spectra behavior to their algorithmic complexity. We suggest that extending techniques can be used to further investigate the behavior of evolving biological networks. In the extended version of this paper we apply these techniques to seven tissue specific regulatory networks as static example and network of a naïve pluripotent immune cell in the process of differentiating towards a Th17 cell as evolving example, finding the most and least informative Eigenvalues at every stage.

Keywords

Network science graph spectra behavior algorithmic probability information content algorithmic complexity Eigenvalues meaning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Farkasa, I., Derenyia, I., Jeongc, H., Nedac, Z., Oltvaie, Z.N., Ravaszc, E., Schubertf, A., Barabasi, A.L., Vicseka, T.: Networks in life: scaling properties and eigenvalue spectra. Physica A 314, 25–34 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Calude, C.S.: Information and Randomness: An Algorithmic Perspective, 2nd edn. EATCS Series. Springer (2010)Google Scholar
  3. 3.
    Chaitin, G.J.: On the length of programs for computing finite binary sequences. Journal of the ACM 13(4), 547–569 (1966)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-Blackwell (2009)Google Scholar
  5. 5.
    Delahaye, J.-P., Zenil, H.: Numerical Evaluation of the Complexity of Short Strings: A Glance Into the Innermost Structure of Algorithmic Randomness. Applied Mathematics and Computation 219, 63–77 (2012)CrossRefMATHGoogle Scholar
  6. 6.
    Erdös, P., Rényi, A.: On Random Graphs I. Publ. Math. Debrecen 6, 290–297 (1959)MATHMathSciNetGoogle Scholar
  7. 7.
    Gilbert, E.N.: Random graphs. Annals of Mathematical Statistics 30, 1141–1144Google Scholar
  8. 8.
    Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems of Information and Transmission 1(1), 1–7 (1965)MathSciNetGoogle Scholar
  9. 9.
    Levin, L.A.: Laws of information conservation (non-growth) and aspects of the foundation of probability theory. Problems of Information Transmission 10(3), 206–210 (1974)Google Scholar
  10. 10.
    Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 3rd edn. Springer (2009)Google Scholar
  11. 11.
    Piperno, A.: Search Space Contraction in Canonical Labeling of Graphs (Preliminary Version), CoRR abs/0804.4881 (2008)Google Scholar
  12. 12.
    Skiena, S.: Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica, pp. 181–187. Addison-Wesley, Reading (1990)MATHGoogle Scholar
  13. 13.
    Soler-Toscano, F., Zenil, H., Delahaye, J.-P., Gauvrit, N.: Calculating Kolmogorov Complexity from the Frequency Output Distributions of Small Turing Machines. PLoS One 9(5), e96223 (2014)Google Scholar
  14. 14.
    Solomonoff, R.J.: A formal theory of inductive inference: Parts 1 and 2. Information and Control 7,1–22, 224–254 (1964)Google Scholar
  15. 15.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  16. 16.
    Zenil, H.: Network Motifs and Graphlets Wolfram Demonstrations Project (December 9, 2013), http://demonstrations.wolfram.com/NetworkMotifsAndGraphlets/
  17. 17.
    Zenil, H., Soler-Toscano, F., Dingle, K., Louis, A.: Graph Automorphisms and Topological Characterization of Complex Networks by Algorithmic Information Content, Physica A: Statistical Mechanics and its Applications 404, 341–358 (2014)Google Scholar
  18. 18.
    Zenil, H., Soler-Toscano, F., Delahaye, J.-P., Gauvrit, N.: Two-Dimensional Kolmogorov Complexity and Validation of the Coding Theorem Method by Compressibility (2013)Google Scholar
  19. 19.
    Zenil, H., Kiani, N.A., Tegnér, J.: Methods of Information Theory and Algorithmic Complexity for Network Biology (submitted to journal), arXiv:1401.3604 [q-bio.MN]Google Scholar
  20. 20.
    Zenil, H., Kiani, N.A., Tegnér, J.: Algorithmic complexity of motifs clusters superfamilies of networks. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, Shanghai, China (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hector Zenil
    • 1
  • Narsis A. Kiani
    • 1
  • Jesper Tegnér
    • 1
  1. 1.Unit of Computational Medicine, Department of Medicine, Centre for Molecular MedicineKarolinska InstituteStockholmSweden

Personalised recommendations