Skip to main content

Operational Oil Spill Modelling: From Science to Engineering Applications in the Presence of Uncertainty

  • Chapter
  • First Online:

Part of the book series: The Reacting Atmosphere ((REAT,volume 2))

Abstract

Quantifying uncertainties in real-time operational oil spill forecasts remains an outstanding problem, but one that should be solvable with present science and technology. Uncertainties arise from the salient characteristics of oil spill models, hydrodynamic models, and wind forecast systems, which are affected by choices of modelling parameters. Presented and discussed are: (1) a systems-level approach for producing a range of oil spill forecasts, (2) a methodology for integrating probability estimates within oil spill models, and (3) a multi-model system for updating forecasts. These technologies provide the next steps for the efficient operational modelling required for real-time mitigation and crisis management for oil spills at sea.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abascal, A.J., Castanedo, S., Medina, R., Losada, I.J., Alvarez-Fanjul, E.: Application of HF radar currents to oil spill modelling radar. Mar. Pollut. Bull. 58, 238–248 (2009)

    Article  Google Scholar 

  2. Abascal, A.J., Castanedo, S., Medina, R., Liste, M.: Analysis of reliability of a statistical oil spill response model. Mar. Pollut. Bull. 60, 2099–2110 (2010)

    Article  Google Scholar 

  3. ASCE.: State-of-the-art review of modelling transport and fate oil spills, ASCE committee on modelling oil spills water resources engineering division. J. Hydraul. Eng. 122, 594–609 (1996)

    Google Scholar 

  4. Beegle-Krause, C.J.: GNOME: NOAA’s next-generation spill trajectory model. In: Oceans’99 MTS/IEEE Proceedings Conference Committee, vol. 3, pp. 1262–1266 (1999)

    Google Scholar 

  5. Bennett, J.R., Clites, A.H.: Accuracy of trajectory calculation in a finite-difference circulation model. J. Comput. Phys. 68, 272–282 (1987)

    Article  MATH  Google Scholar 

  6. Berry, A., Dabrowski, T., Lyons, K.: The oil spill model OILTRANS and its application to the Celtic Sea. Mar. Pollut. Bull. 64, 2489–2501 (1990)

    Article  Google Scholar 

  7. Castanedo, S., Juanes, J.A., Medina, R., Puente, A., Fernandez, F., Olabarrieta, M., Pombo, C.: Oil spill vulnerability assessment integrating physical, biological and socio-economical aspects: application to the Cantabrian coast (Bay of Biscay, Spain). J. Environ. Manag. 91, 149–159 (2009)

    Article  Google Scholar 

  8. Csanady, G.T.: Turbulent diffusion in the environment. Geophysics and Astrophysics Monographs, vol. 3. Reidel, Boston (1973)

    Google Scholar 

  9. Davies, A.M., Kwong, S.C.M., Flather, R.A.: On determining the role of wind wave turbulence and grid resolution upon computed storm driven currents. Cont. Shelf Res. 20, 1825–1888 (2000)

    Article  Google Scholar 

  10. De Dominicis, M., Leuzzi, G., Monti, P., Pinardi, N., Poulain, P.-M.: Eddy diffusivity derived from drifter data for dispersion model applications. Ocean Dyn. 62, 1381–1398 (2012)

    Article  Google Scholar 

  11. De Dominicis, M., Pinardi, N., Zodiatis, G., Archetti, R.: MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting—part 2: numerical simulations and validations. Geosci. Model Dev. 6, 1871–1888 (2013)

    Article  Google Scholar 

  12. De Dominicis, M., Pinardi, N., Zodiatis, G., Lardner, R.: MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting-part 1: theory. Geosci. Model Dev. 6, 1851–1869 (2013)

    Google Scholar 

  13. Farrington, J.W.: Oil pollution in the marine environment i: inputs, big spills, small spills, and dribbles. Environ.: Sci. Policy Sustain. Dev. 55, 3–13 (2013). doi:10.1080/00139157.2013.843980

    Article  Google Scholar 

  14. Galt, J.A.: Uncertainty analysis related to oil spill modelling. Spill Sci. Technol. Bull. 4, 231–238 (1998)

    Google Scholar 

  15. Gilbert, T.: Maritime response operations requirements for metocean data and services. In: Conference and Workshop on Meteorological and Oceanographic Services for Marine Pollution Emergency Response Operations, Townsville, Australia, 13–17 July 1998

    Google Scholar 

  16. Hackett, B., Comerma, E., Daniel, P., Ichikawa, H.: Marine oil pollution prediction. Oceanography 22(3), 168–175 (2009). doi:10.5670/oceanog.2009.75

    Article  Google Scholar 

  17. Haza, A.C., Ozgokmen, T.M., Griffa, A., Garraffo, Z.D., Piterbarg, L.: Parameterization of particle transport at submesoscales in the Gulf Stream region using Lagrangian subgridscale models. Ocean Model. 42, 31–49 (2012). doi:10.1016/j.ocemod.2011.11.005

    Article  Google Scholar 

  18. Hou, X., Hodges, B.R.: Integrating Google Maps/Earth in an automated oil spill forecast system. Mar. Technol. Soc. J. 48(4), 78–85 (2014)

    Article  Google Scholar 

  19. Hou, X., Hodges, B.R., Negusse, S., Barker, C.: A multi-model Python wrapper for operational oil spill transport forecasts. Comput. Sci. Discov. (submitted) (2014)

    Google Scholar 

  20. Jensen, J.R., Ramsey III, E.W., Holmes, J.M., Michel, J.E., Savitsky, B., Davis, B.A.: Environmental Sensitivity Index (ESI) mapping for oil spills using remote sensing and geographic information system technology. Int. J. Geograph. Inf. Syst. 4, 181–201 (1990)

    Google Scholar 

  21. Ji, Z.G.: Hydrodynamics and Water Quality: Modelling Rivers, Lakes, and Estuaries. Wiley, Hoboken (2008)

    Book  Google Scholar 

  22. Kim, T.-H., Yang, C.-S., Oh, J.-H., Ouchi, K.: Analysis of the contribution of wind drift factor to oil slick movement under strong tidal condition: Hebei spirit oil spill case. PLoS ONE 9(1), e87393 (2014)

    Article  Google Scholar 

  23. Lardner, R., Zodiatis, G., Hayes, D., Pinardi, N.: Application of the MEDSLIK Oil Spill Model to the Lebanese Spill of July 2006. European Group of Experts on Satellite Monitoring of Sea Based Oil Pollution, European Communities (2006)

    Google Scholar 

  24. Lehr, W., Jones, R., Evans, M., Simecek-Beatty, D., Overstreet, R.: Revisions of the ADIOS oil spill model. Environ. Model. Softw. 17, 191–199 (2002)

    Article  Google Scholar 

  25. Marinone, S.G.: A numerical simulation of the two- and three-dimensional Lagrangian circulation in the northern Gulf of California. Estuar., Coast. Shelf Sci. 68, 93–100 (2006)

    Article  Google Scholar 

  26. Mariano, A.J., Kourafalou, V.H., Srinivasan, A., Halliwell, G.R., Ryan, E.H., Roffer, M.: On the modelling of the 2010 Gulf of Mexico Oil Spill. Dyn. Atmos. Ocean 52, 322–340 (2011). doi:10.1016/j.dynatmoce.2011.06.001

    Article  Google Scholar 

  27. Marta-Almeida, M., Ruiz-Villarreal, M., Pereira, J., Otero, P., Cirano, M., Zhang, X., Hetland, R.D.: Efficient tools for marine operational forecast and oil spill tracking. Mar. Pollut. Bull. 71, 139–151 (2013). doi:10.1016/j.marpolbul.2013.03.022

    Article  Google Scholar 

  28. Martinez, W., Martinez, A.: Computational Statistics Handbook. Chapman and Hall/CRC, Boca Raton (2002)

    Google Scholar 

  29. Minguez, R., Abascal, A.J., Castanedo, S., Medina, R.: Stochastic Lagrangian trajectory model for drifting objects in the ocean. Stoch. Environ. Res. Risk Assess. 26(8), 1081–1093 (2012)

    Article  Google Scholar 

  30. Nittis, K., Perivoliotis, L., Korres, G., Tziavos, C., Thanos, I.: Operational monitoring and forecasting for marine environmental applications in the Aegean Sea. Environ. Model. Softw. 21, 243–257 (2006). doi:10.1016/j.envsoft.2004.04.023

    Article  Google Scholar 

  31. North, E.W., Adams, E.E., Schlag, Z., Sherwood, C.R., He, R., Hyun, K.H., Socolofsky, S.A.: Simulating oil droplet dispersal from the deepwater horizon spill with a Lagrangian approach. In: Liu, Y., Macfadyen, A., Ji, Z.-G., Weisberg, R.H. (eds.) Monitoring and Modelling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise. Geophysical Monograph Series, vol. 195, pp. 217–226. American Geophysical Union, Washington (2011). doi:10.1029/2011GM001102

    Chapter  Google Scholar 

  32. Oberkampf, W.L.: Uncertainty quantification using evidence theory. Validation and Uncertainty Quantification Department, Sandia National Laboratories, Albuquerque, New Mexico (2005). http://web.stanford.edu/group/cits/pdf/lectures/oberkampf.pdf

  33. O’Connor, C., Barker, C., Beegle-Krause, C.J., Eclipse, L., Zelenke, B.: General NOAA Operational Modelling Environment (GNOME) Technical Documentation. U.S. Department of Commerce, NOAA Technical Memorandum NOS OR&R 40, 105 pp. (2012)

    Google Scholar 

  34. Okubo, A.: Oceanic diffusion diagrams. Deep Sea Res. 18, 789–802 (1971)

    Google Scholar 

  35. Price, J.M., Reed, M., Howard, M.K., Johnson, W.R., Ji, Z.-G., Marshall, C.F., Guinasso Jr., N.L., Rainey, G.B.: Preliminary assessment of an oil-spill trajectory model using satellite-tracked, oil-spill-simulating drifters. Environ. Model. Softw. 21, 258–270 (2006). doi:10.1016/j.envsoft.2004.04.025

  36. Proehl, J.A., Lynch, D.R., McGillicuddy Jr., D.J., Ledwell, J.R.: Modelling turbulent dispersion on the North Flank of Georges Bank using Lagrangian particle methods. Cont. Shelf Res. 25, 875–900 (2005)

    Google Scholar 

  37. Reddy, C.M., Arey, J.S., Seewald, J.S., Sylva, S.P., Lemkau, K.L., Nelson, R.K., Carmichael, C.A., McIntyre, C.P., Fenwick, J., Ventura, T., van Mooy, B.A.S., Camilli, R.: Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. 109(50), 20229–20234 (2012). doi:10.1073/pnas.1101242108/-/DCSupplemental

    Article  Google Scholar 

  38. Samson, S., Reneke, J.A., Wiecek, M.: A review of different perspectives on uncertainty and risk and an alternative modelling paradigm. Reliab. Eng. Syst. Saf. 94, 558–567 (2009)

    Article  Google Scholar 

  39. Sayol, J.M., Orfila, A., Simarro, G., Conti, D., Renault, L., Molcard, A.: A Lagrangian model for tracking surface spills and SaR operations in the Ocean. Environ. Model. Softw. 52(2), 74–82 (2014)

    Article  Google Scholar 

  40. Schoch, G.C., Chao, Y., Colas, F., Farrara, J., McCammon, M., Olsson, P., Singhal, G.: An ocean observing and prediction experiment in Prince William Sound Alaska. Bull. Am. Meteorol. Soc. 92, 997–1007 (2011). doi:10.1175/2011BAMS3023.1

    Article  Google Scholar 

  41. Sebastiao, P., Soares, C.G.: Uncertainty in predictions of oil spill trajectories in open sea. Ocean Eng. 34, 576–584 (2007)

    Article  Google Scholar 

  42. SELFE v3.1dc User Manual. http://www.stccmop.org/knowledge_transfer/software/selfe/v3manual (2014). Accessed 21 Dec 2014

  43. Shaw, J.M.: A microscopic view of oil slick break-up and emulsion formation in breaking wave. Spill Sci. Technol. Bull. 8(5/6), 491–501 (2003). doi:10.1016/S1353-2561(03)00061-6

    Article  Google Scholar 

  44. Singhal, G., Panchang, V.G., Lillibridge, J.L.: Reliability assessment for operational wave forecasting system in Prince William Sound, Alaska. J. Waterw., Port, Coast., Ocean Eng. 136, 337–349 (2010). doi:10.1061/(ASCE)WW.1943-5460.0000056

    Article  Google Scholar 

  45. Sobey, R.J., Barker, C.H.: Wave-driven transport of surface oil. J. Coast. Res. 13(2), 490–496 (1997)

    Google Scholar 

  46. Sotillo, M.G., Fanjul, E.A., Castanedo, S., Abascal, A.J., Menendez, J., Emelianov, M., Olivella, R., Garcia-Ladona, E., Ruiz-Villarreal, M., Conde, J., Gomez, M., Conde, P., Gutierrez, A.D., Medina, R.: Towards an operational system for oil spill forecast over Spanish waters: initial developments and implementation test. Mar. Pollut. Bull. 56, 686–703 (2008)

    Article  Google Scholar 

  47. Stanovoy, V.V., Eremina, T.R., Isaev, A.V., Neelov, I.A., Vankevich, R.E., Ryabchenko, V.A.: Modelling of oil spills in ice conditions in the Gulf of Finland on the basis of an operative forecasting system. Oceanology 52(6), 754–759 (2012). doi:10.1134/S0001437012060136

    Article  Google Scholar 

  48. Stringari, C.E., Marques, W.C., Eidt, R.T., Mello, L.F.: Modelling an oil spill along the Southern Brazilian Shelf: Forcing characterization and its influence on the oil fate. Int. J. Geosci. 4, 397–407 (2013). doi:10.4236/ijg.2013.42038

  49. Texas Coastal Observation Network. http://www.tcoon.org (2014). Accessed 21 Dec 2014

  50. Thorpe, S.A.: Langmuir circulation and the dispersion of oil spills in shallow seas. Spill Sci. Technol. Bull. 6(3/4), 213–223 (2000)

    Article  Google Scholar 

  51. Tintore, J., et al.: SOCIB: The Balearic Islands coastal ocean observing and forecasting system responding to science, technology and society needs. Mar. Technol. Soc. J. 47(1), 101–117 (2013)

    Article  Google Scholar 

  52. Texas Water Development Board Oil Spill Prevention & Response. http://www.twdb.texas.gov/surfacewater/bays/oil_spill (2014). Accessed 21 Dec 2014

  53. Wang, S.-D., Shen, Y.-M., Guo, Y.-K., Tang, J.: Three-dimensional numerical simulation for transport of oil spills in seas. Ocean Eng. 35, 503–510 (2008). doi:10.1016/j.oceaneng.2007.12.001

    Article  Google Scholar 

  54. Xu, Q., Li, X., Wei, Y., Tang, Z., Cheng, Y., Pichel, W.G.: Satellite observations and modelling of oil spill trajectories in the Bohai Sea. Mar. Pollut. Bull. 71, 107–116 (2013)

    Article  Google Scholar 

  55. Xu, H.-L., Chen, J.-N., Wang, S.-D., Liu, Y.: Oil spill forecast model based on uncertainty analysis: a CAD study of Dalian Oil Spill. Ocean Eng. 54, 206–212 (2012). doi:10.1016/j.oceaneng.2012.07.019

    Article  Google Scholar 

  56. Yapa, P.D., Dasanayaka, L.K., Bandara, U.C., Nakata, K.: A model to simulate the transport and fate of gas and hydrates released in deepwater. J. Hydraul. Res. 48(5), 559–572 (2010). doi:10.1080/00221686.2010.507010

    Article  Google Scholar 

  57. You, F., Leyffer, S.: Mixed-integer dynamic optimization for oil-spill response planning with integration of a dynamic oil weathering model. AIChE J. 57(12), 3555–3564 (2011)

    Article  Google Scholar 

  58. Zelenke, B., O’Connor, C., Barker, C., Beegle-Krause, C.J., Eclipse, L.: General NOAA Operational Modelling Environment (GNOME) Technical Documentation. U.S. Department of Commerce, NOAA Technical Memorandum NOS OR&R 40. Seattle, WA USA: Emergency Response Division, NOAA. 105 pp. (2012)

    Google Scholar 

  59. Zhang, Y.J., Baptista, A.M.: SELFE: A semi-implicit Eulerian-Lagrangian finite-element model for cross-scale ocean circulation. Ocean Model. 21, 71–96 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The work of X. Hou and B.R. Hodges is based upon work supported by the Research and Development program of the Texas General Land Office Oil Spill Prevention and Response Division under Grant No. 13-439-000-7898 and in part by a grant from BP/The Gulf of Mexico Research Initiative. A. Orfila and J.M. Sayol would like to thank the support from MICINN through Project CGL2011-22964. J.M. Sayol is supported by the PhD CSIC-JAE program cofunded by the European Social Fund (ESF) and CSIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben R. Hodges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hodges, B.R., Orfila, A., Sayol, J.M., Hou, X. (2015). Operational Oil Spill Modelling: From Science to Engineering Applications in the Presence of Uncertainty. In: Ehrhardt, M. (eds) Mathematical Modelling and Numerical Simulation of Oil Pollution Problems. The Reacting Atmosphere, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-16459-5_5

Download citation

Publish with us

Policies and ethics