Skip to main content

Equilibrium Theory of Bidensity Particle-Laden Flows on an Incline

  • Chapter
  • First Online:
Mathematical Modelling and Numerical Simulation of Oil Pollution Problems

Part of the book series: The Reacting Atmosphere ((REAT,volume 2))

Abstract

The behaviour of inhomogeneous suspensions in a viscous oil is relevant in the context of oil spill and other oil-related disasters which may lead to the unwanted mixture of sand grains and oil. This warrants the fundamental study of the dynamics of solid particles in a thin film of viscous fluid. Specifically, sheared concentrated suspensions in a viscous fluid are subject to a diffusive mechanism called shear-induced migration that consists of “drift diffusion” and “self or tracer diffusion”. Drift diffusion causes particles to move from high to low concentrations, while tracer diffusion dictates mixing between particles of the same size. The latter mechanism becomes important in polydisperse slurries. In this chapter, we incorporate the effects of shear-induced migration and sedimentation to develop a model for the gravity-driven thin film of bidensity suspensions. We use this mathematical model to validate recent experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breedveld, V., van den Ende, D., Tripathi, A., Acrivos, A.: The measurement of the shear-induced particle and fluid tracer diffusivities in concentrated suspensions by a novel method. J. Fluid Mech. 375, 297–318 (1998)

    Article  MATH  Google Scholar 

  2. Cook, B.P.: Theory for particle settling and shear-induced migration in thin-film liquid flow. Phys. Rev. E 78, 045303 (2008)

    Article  Google Scholar 

  3. Couturier, É., Boyer, F., Pouliquen, O., Guazzelli, É.: Suspensions in a tilted trough: second normal stress difference. J. Fluid Mech. 686, 26–39 (2011)

    Article  MATH  Google Scholar 

  4. Davis, R.H., Acrivos, A.: Sedimentation of noncolloidal particles at low Reynolds numbers. Annu. Rev. Fluid Mech. 17, 91 (1985)

    Article  Google Scholar 

  5. Eckstein, E.C., Bailey, D., Shapiro, A.H.: Self-diffusion of particles in shear flow of a suspension. J. Fluid Mech. 79, 191–208 (1977)

    Article  Google Scholar 

  6. Gadala-Maria, F., Acrivos, A.: Shear induced structure in a concentrated suspension of solid spheres. J. Rheol. 24(6), 799–814 (1980)

    Article  Google Scholar 

  7. Krishnan, G.P., Beimfohr, S., Leighton, D.T.: Shear-induced radial segregation in bidisperse suspensions. J. Fluid Mech. 321, 371–393 (1996)

    Article  Google Scholar 

  8. Lee, S., Stokes, Y.M., Bertozzi, A.L.: A model for particle laden flow in a spiral concentrator. In: 23rd International Congress of Theoretical and Applied Mechanics (ICTAM) Procedia IUTAM (2012)

    Google Scholar 

  9. Lee, S., Stokes, Y.M., Bertozzi, A.L.: Behavior of a particle-laden flow in a spiral channel. Phys. Fluids 26, 043302 (2014)

    Article  Google Scholar 

  10. Lee, S., Mavromoustaki, A., Urdaneta, G., Huang, K., Bertozzi, A.L.: Experimental investigation of bidensity slurries on an incline. Granul. Matter 16(2), 269–274 (2014)

    Article  Google Scholar 

  11. Leighton, D., Acrivos, A.: Viscous resuspension. Chem. Eng. Sci. 41, 1377–1384 (1986)

    Article  Google Scholar 

  12. Leighton, D., Acrivos, A.: Shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181, 415 (1987)

    Article  Google Scholar 

  13. Leighton, D., Acrivos, A.: Measurement of shear-induced self-diffusion in concentrated suspensions of spheres. J. Fluid Mech. 177, 109–131 (1987)

    Article  Google Scholar 

  14. Mavromoustaki, A., Bertozzi, A.L.: Hyperbolic systems of conservation laws in gravity-driven, particle-laden thin-film flows. J. Eng. Math. 88, 29–48 (2014)

    Article  MathSciNet  Google Scholar 

  15. Murisic, N., Ho, J., Hu, V., Latterman, P., Koch, T., Lin, K., Mata, M., Bertozzi, A.L.: Particle-laden viscous thin-film flows on an incline: experiments compared with an equilibrium theory based on shear-induced migration and particle settling. Physica D 240, 1661–1673 (2011)

    Article  Google Scholar 

  16. Murisic, N., Pausader, B., Peschka, D., Bertozzi, A.L.: Dynamics of particle settling and resuspension in viscous liquid films. J. Fluid Mech. 717, 203–231 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nott, P.R., Brady, J.F.: Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275, 157–199 (1994)

    Article  MATH  Google Scholar 

  18. Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931 (1997)

    Article  Google Scholar 

  19. Phillips, R.J., Armstrong, R.C., Brown, R.A., Graham, A.L., Abbott, J.R.: A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids 4, 30–40 (1992)

    Article  MATH  Google Scholar 

  20. Ramachandran, A., Leighton, D.T.: Viscous resuspension in a tube: the impact of secondary flows resulting from second normal stress differences. Phys. Fluids 19(5), 053301 (2007)

    Article  Google Scholar 

  21. Ramachandran, A., Leighton, D.T.: The effect of gravity on the meniscus accumulation phenomenon in a tube. J. Rheol. 51, 1073–1098 (2007)

    Article  Google Scholar 

  22. Revay, J.M., Higdon, J.J.L.: Numerical simulation of polydisperse sedimentation: equal-sized spheres. J. Fluid Mech. 243, 15–32 (1992)

    Article  Google Scholar 

  23. Sierou, A., Brady, J.F.: Shear-induced self-diffusion in non-colloidal suspensions. J. Fluid Mech. 506, 285–314 (2004)

    Article  MATH  Google Scholar 

  24. Timberlake, B.D., Morris, J.F.: Particle migration and free-surface topography in inclined plane flow of a suspension. J. Fluid Mech. 538, 309–341 (2005)

    Article  MATH  Google Scholar 

  25. Tripathi, A., Acrivos, A.: Viscous resuspension in a bidensity suspension. Int. J. Multiph. Flow 25(1), 1–14 (1999)

    Article  MATH  Google Scholar 

  26. Wang, L., Bertozzi, A.L.: Shock solutions for high concentration particle-laden thin films. SIAM J. Appl. Math. 74, 322–344 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by NSF grants DMS-1312543 and DMS-1048840 and UC Lab Fees Research Grant 09-LR-04-116741-BERA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungyon Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, S., Wong, J., Bertozzi, A.L. (2015). Equilibrium Theory of Bidensity Particle-Laden Flows on an Incline. In: Ehrhardt, M. (eds) Mathematical Modelling and Numerical Simulation of Oil Pollution Problems. The Reacting Atmosphere, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-16459-5_4

Download citation

Publish with us

Policies and ethics