From Context-Aware to Context-Based: Mobile Just-In-Time Retrieval of Cultural Heritage Objects

  • Jörg Schlötterer
  • Christin Seifert
  • Wolfgang Lutz
  • Michael Granitzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9022)


Cultural content providers face the challenge of disseminating their content to the general public. Meanwhile, access to Web resources shifts from desktop to mobile devices and the wide range of contextual sensors of those devices can be used to proactively retrieve and present resources in an unobtrusive manner. This proactive process, also known as just-in-time retrieval, increases the amount of information viewed and hence is a viable way to increase the visibility of cultural content. We provide a contextual model for mobile just-in-time retrieval, discuss the role of sensor information for its contextual dimensions and show the model’s applicability with a prototypical implementation. Our proposed approach enriches a user’s web experience with cultural content and the developed model can provide guidance for other domains.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abowd, G.D., Dey, A.K.: Towards a Better Understanding of Context and Context-Awareness. In: Proc. of HUC, pp. 304–307 (1999)Google Scholar
  2. 2.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Recommender Systems Handbook, pp. 217–253. Springer (2011)Google Scholar
  3. 3.
    Baldauf, M.: A survey on context-aware systems. International Journal on Ad Hoc and Ubiquitous Computing 2(4) (2007)Google Scholar
  4. 4.
    Ek, T., Kirkegaard, C., Jonsson, H., Nugues, P.: Named entity recognition for short text messages. Procedia-Social and Behavioral Sciences 27, 178–187 (2011)CrossRefGoogle Scholar
  5. 5.
    Gamon, M., Yano, T., Song, X., Apacible, J., Pantel, P.: Identifying salient entities in web pages. In: Proc. of CIKM, pp. 2375–2380 (2013)Google Scholar
  6. 6.
    Hong, J.Y., Suh, E.H., Kim, S.J.: Context-aware systems: A literature review and classification. Expert Systems with Applications 36(4), 8509–8522 (2009)CrossRefGoogle Scholar
  7. 7.
    Hudson, S.E., Fogarty, J., Atkeson, C.G., Avrahami, D., Forlizzi, J., Kiesler, S., Lee, J.C., Yang, J.: Predicting Human Interruptibility with Sensors: A Wizard of Oz Feasibility Study. In: Proc. of SIGCHI (2003)Google Scholar
  8. 8.
    Middleton, S.E.: Interface agents: A review of the field. CoRR cs.MA/0203 28 (March 2002)Google Scholar
  9. 9.
    Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvisticae Investigationes 30(1), 3–26 (2007)CrossRefGoogle Scholar
  10. 10.
    Rhodes, B.J.: Just-In-Time Information Retrieval. Ph.D. thesis, Massachusetts Institute of Technology (2000)Google Scholar
  11. 11.
    Ritter, A., Clark, S., Mausam, E.O.: Named entity recognition in tweets: An experimental study. In: Proc. of EMNLP, pp. 1524–1534 (2011)Google Scholar
  12. 12.
    Shen, X., Tan, B., Zhai, C.: Context-sensitive information retrieval using implicit feedback. In: Proc. of SIGIR, p. 43 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jörg Schlötterer
    • 1
  • Christin Seifert
    • 1
  • Wolfgang Lutz
    • 1
  • Michael Granitzer
    • 1
  1. 1.Media Computer ScienceUniversity of PassauGermany

Personalised recommendations