Skip to main content

Temporal Latent Topic User Profiles for Search Personalisation

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 9022)

Abstract

The performance of search personalisation largely depends on how to build user profiles effectively. Many approaches have been developed to build user profiles using topics discussed in relevant documents, where the topics are usually obtained from human-generated online ontology such as Open Directory Project. The limitation of these approaches is that many documents may not contain the topics covered in the ontology. Moreover, the human-generated topics require expensive manual effort to determine the correct categories for each document. This paper addresses these problems by using Latent Dirichlet Allocation for unsupervised extraction of the topics from documents. With the learned topics, we observe that the search intent and user interests are dynamic, i.e., they change from time to time. In order to evaluate the effectiveness of temporal aspects in personalisation, we apply three typical time scales for building a long-term profile, a daily profile and a session profile. In the experiments, we utilise the profiles to re-rank search results returned by a commercial web search engine. Our experimental results demonstrate that our temporal profiles can significantly improve the ranking quality. The results further show a promising effect of temporal features in correlation with click entropy and query position in a search session.

Keywords

  • User Profiles
  • Temporal Aspects
  • Latent Topics
  • Search Personalisation
  • Re-ranking

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-16354-3_67
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-16354-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, P.N., White, R.W., Chu, W., Dumais, S.T., Bailey, P., Borisyuk, F., Cui, X.: Modeling the impact of short- and long-term behavior on search personalization. In: SIGIR, pp. 185–194. ACM (2012)

    Google Scholar 

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res., 993–1022 (2003)

    Google Scholar 

  3. Burges, C.J., Ragno, R., Le, Q.V.: Learning to rank with nonsmooth cost functions. In: NIPS, pp. 193–200. MIT Press (2007)

    Google Scholar 

  4. Burges, C.J.C.: From ranknet to lambdarank to lambdamart: An overview. Technical Report MSR-TR-2010-82, Microsoft Research (July 2010)

    Google Scholar 

  5. Chapelle, O., Chang, Y., Liu, T.: Yahoo! learning to rank challenge overview. In: JMLR, pp. 1–24 (2011)

    Google Scholar 

  6. Dou, Z., Song, R., Wen, J.-R.: A large-scale evaluation and analysis of personalized search strategies. In: WWW, pp. 581–590. ACM (2007)

    Google Scholar 

  7. Fox, S., Karnawat, K., Mydland, M., Dumais, S., White, T.: Evaluating implicit measures to improve web search. ACM Trans. Inf. Syst., 147–168 (2005)

    Google Scholar 

  8. Harvey, M., Crestani, F., Carman, M.J.: Building user profiles from topic models for personalised search. In: CIKM, pp. 2309–2314. ACM (2013)

    Google Scholar 

  9. Hassan, A., White, R.W.: Personalized models of search satisfaction. In: CIKM, pp. 2009–2018. ACM (2013)

    Google Scholar 

  10. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press (2008)

    Google Scholar 

  11. Raman, K., Bennett, P.N., Collins-Thompson, K.: Toward whole-session relevance: Exploring intrinsic diversity in web search. In: SIGIR, pp. 463–472 (2013)

    Google Scholar 

  12. Shokouhi, M., White, R.W., Bennett, P., Radlinski, F.: Fighting search engine amnesia: Reranking repeated results. In: SIGIR, pp. 273–282. ACM (2013)

    Google Scholar 

  13. Song, Y., Shi, X., White, R., Awadallah, A.H.: Context-aware web search abandonment prediction. In: SIGIR, pp. 93–102. ACM (2014)

    Google Scholar 

  14. Teevan, J., Dumais, S.T., Horvitz, E.: Personalizing search via automated analysis of interests and activities. In: SIGIR, pp. 449–456. ACM (2005)

    Google Scholar 

  15. Teevan, J., Morris, M.R., Bush, S.: Discovering and using groups to improve personalized search. In: WSDM, pp. 15–24. ACM (2009)

    Google Scholar 

  16. Vu, T.T., Song, D., Willis, A., Tran, S.N., Li, J.: Improving search personalisation with dynamic group formation. In: SIGIR, pp. 951–954. ACM (2014)

    Google Scholar 

  17. Wang, H., Song, Y., Chang, M.-W., He, X., Hassan, A., White, R.W.: Modeling action-level satisfaction for search task satisfaction prediction. In: SIGIR, pp. 123–132. ACM (2014)

    Google Scholar 

  18. White, R.W., Bennett, P.N., Dumais, S.T.: Predicting short-term interests using activity-based search context. In: CIKM, pp. 1009–1018. ACM (2010)

    Google Scholar 

  19. White, R.W., Chu, W., Hassan, A., He, X., Song, Y., Wang, H.: Enhancing Personalized Search by Mining and Modeling Task Behavior. In: WWW, pp. 1411–1420. ACM (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Vu, T., Willis, A., Tran, S.N., Song, D. (2015). Temporal Latent Topic User Profiles for Search Personalisation. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds) Advances in Information Retrieval. ECIR 2015. Lecture Notes in Computer Science, vol 9022. Springer, Cham. https://doi.org/10.1007/978-3-319-16354-3_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16354-3_67

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16353-6

  • Online ISBN: 978-3-319-16354-3

  • eBook Packages: Computer ScienceComputer Science (R0)