Automatically Assessing Wikipedia Article Quality by Exploiting Article–Editor Networks

  • Xinyi Li
  • Jintao Tang
  • Ting Wang
  • Zhunchen Luo
  • Maarten de Rijke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9022)


We consider the problem of automatically assessing Wikipedia article quality. We develop several models to rank articles by using the editing relations between articles and editors. First, we create a basic model by modeling the article-editor network. Then we design measures of an editor’s contribution and build weighted models that improve the ranking performance. Finally, we use a combination of featured article information and the weighted models to obtain the best performance. We find that using manual evaluation to assist automatic evaluation is a viable solution for the article quality assessment task on Wikipedia.


Weighted Model Ranking Performance Feature Article Editing Action Simple Weighted 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blumenstock, J.E.: Size matters: Word count as a measure of quality on Wikipedia. In: WWW (2008)Google Scholar
  2. 2.
    Cassidy, T., Ji, H., Ratinov, L.-A., Zubiaga, A., Huang, H.: Analysis and enhancement of wikification for microblogs with context expansion. In: COLING (2012)Google Scholar
  3. 3.
    Ferschke, O., Zesch, T., Gurevych, I.: Wikipedia revision toolkit: Efficiently accessing Wikipedia’s edit history. In: ACL (2011)Google Scholar
  4. 4.
    Hu, M., Lim, E.-P., Sun, A., Lauw, H.W., Vuong, B.-Q.: Measuring article quality in Wikipedia: models and evaluation. In: CIKM (2007)Google Scholar
  5. 5.
    Li, X., Luo, Z., Pang, K., Wang, T.: A lifecycle analysis of the revision behavior of featured articles on Wikipedia. In: ISCC (2013)Google Scholar
  6. 6.
    Lih, A.: Wikipedia as participatory journalism: Reliable sources? metrics for evaluating collaborative media as a news resource. In: ISOJ (2004)Google Scholar
  7. 7.
    Liu, B.: Web Data Mining. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  8. 8.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the web. Technical report, Stanford University (1999)Google Scholar
  9. 9.
    Stvilia, B., Twidale, M.B., Smith, L.C., Gasser, L.: Assessing information quality of a community-based encyclopedia. In: IQ (2005)Google Scholar
  10. 10.
    Suzuki, Y., Yoshikawa, M.: Assessing quality score of Wikipedia article using mutual evaluation of editors and texts. In: CIKM (2013)Google Scholar
  11. 11.
    Weerkamp, W., de Rijke, M.: Credibility-based reranking for blog post retrieval. Information Retrieval Journal 15(3-4), 243–277 (2012)CrossRefGoogle Scholar
  12. 12.
    Wilkinson, D., Huberman, B.: Cooperation and quality in Wikipedia. In: WikiSym (2007)Google Scholar
  13. 13.
    Wu, F., Weld, D.S.: Open information extraction using Wikipedia. In: ACL (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xinyi Li
    • 1
    • 2
  • Jintao Tang
    • 1
  • Ting Wang
    • 1
  • Zhunchen Luo
    • 3
  • Maarten de Rijke
    • 2
  1. 1.National University of Defense TechnologyChangshaChina
  2. 2.University of AmsterdamAmsterdamThe Netherlands
  3. 3.China Defense Science and Technology Information CenterBeijingChina

Personalised recommendations