Skip to main content

Sources of Evidence for Automatic Indexing of Political Texts

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 9022)


Political texts on the Web, documenting laws and policies and the process leading to them, are of key importance to government, industry, and every individual citizen. Yet access to such texts is difficult due to the ever increasing volume and complexity of the content, prompting the need for indexing or annotating them with a common controlled vocabulary or ontology. In this paper, we investigate the effectiveness of different sources of evidence—such as the labeled training data, textual glosses of descriptor terms, and the thesaurus structure—for automatically indexing political texts. Our main findings are the following. First, using a learning to rank (LTR) approach integrating all features, we observe significantly better performance than previous systems. Second, the analysis of feature weights reveals the relative importance of various sources of evidence, also giving insight in the underlying classification problem. Third, a lean-and-mean system using only four features (text, title, descriptor glosses, descriptor term popularity) is able to perform at 97% of the large LTR model.


  • Automatical Indexing
  • Political Texts
  • Learning to Rank

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-16354-3_63
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-16354-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. EuroVoc. Multilingual thesaurus of the european union,

  2. Iivonen, M.: Consistency in the selection of search concepts and search terms. IPM 31, 173–190 (1995)

    Google Scholar 

  3. Joachims, T.: Training linear svms in linear time. In: SIGKDD, pp. 217–226 (2006)

    Google Scholar 

  4. Nam, J., Kim, J., Loza Mencía, E., Gurevych, I., Fürnkranz, J.: Large-scale multi-label text classification - revisiting neural networks. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014, Part II. LNCS, vol. 8725, pp. 437–452. Springer, Heidelberg (2014)

    CrossRef  Google Scholar 

  5. Pouliquen, B., Steinberger, R., Ignat, C.: Automatic annotation of multilingual text collections with a conceptual thesaurus. In: EUROLAN, pp. 9–28 (2003)

    Google Scholar 

  6. Ren, Z., Peetz, M.-H., Liang, S., van Dolen, W., de Rijke, M.: Hierarchical multi-label classification of social text streams. In: SIGIR, pp. 213–222 (2014)

    Google Scholar 

  7. Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Kernel-based learning of hierarchical multilabel classification models. J. Mach. Learn. Res. 7, 1601–1626 (2006)

    MATH  MathSciNet  Google Scholar 

  8. Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Erjavec, T., Tufis, D.: The JRC-Acquis: A multilingual aligned parallel corpus with 20+ languages. In: LREC, pp. 2142–2147 (2006)

    Google Scholar 

  9. Steinberger, R., Ebrahim, M., Turchi, M.: JRC EuroVoc indexer JEX-A freely available multi-label categorisation tool. In: LREC, pp. 798–805 (2012)

    Google Scholar 

  10. Xu, J., Li, H.: Adarank: A boosting algorithm for information retrieval. In: SIGIR, pp. 391–398 (2007)

    Google Scholar 

  11. Yang, Y., Gopal, S.: Multilabel classification with meta-level features in a learning-to-rank framework. Machine Learning 88(1-2), 47–68 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dehghani, M., Azarbonyad, H., Marx, M., Kamps, J. (2015). Sources of Evidence for Automatic Indexing of Political Texts. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds) Advances in Information Retrieval. ECIR 2015. Lecture Notes in Computer Science, vol 9022. Springer, Cham.

Download citation

  • DOI:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16353-6

  • Online ISBN: 978-3-319-16354-3

  • eBook Packages: Computer ScienceComputer Science (R0)