Skip to main content

Graph Regularised Hashing

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 9022)

Abstract

Hashing has witnessed an increase in popularity over the past few years due to the promise of compact encoding and fast query time. In order to be effective hashing methods must maximally preserve the similarity between the data points in the underlying binary representation. The current best performing hashing techniques have utilised supervision. In this paper we propose a two-step iterative scheme, Graph Regularised Hashing (GRH), for incrementally adjusting the positioning of the hashing hypersurfaces to better conform to the supervisory signal: in the first step the binary bits are regularised using a data similarity graph so that similar data points receive similar bits. In the second step the regularised hashcodes form targets for a set of binary classifiers which shift the position of each hypersurface so as to separate opposite bits with maximum margin. GRH exhibits superior retrieval accuracy to competing hashing methods.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-16354-3_15
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-16354-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. In: NC (2003)

    Google Scholar 

  2. Chang, C.-C., Lin, C.-J.: Libsvm: A library for support vector machines. In: TIST (2011)

    Google Scholar 

  3. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-aggressive algorithms. In: JMLR (2006)

    Google Scholar 

  4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. In: JRSS, Series B (1977)

    Google Scholar 

  5. Diaz, F.: Regularizing query-based retrieval scores. In: IR (2007)

    Google Scholar 

  6. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: Liblinear: A library for large linear classification. In: JLMR (2008)

    Google Scholar 

  7. Gong, Y., Lazebnik, S.: Iterative quantization: A Procrustean approach to learning binary codes. In: CVPR (2011)

    Google Scholar 

  8. Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the curse of dimensionality. In: STOC (1998)

    Google Scholar 

  9. Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In: NIPS (2009)

    Google Scholar 

  10. Liu, W., Wang, J., Ji, R., Jiang, Y., Chang, S.: Supervised hashing with kernels. In: CVPR (2012)

    Google Scholar 

  11. Liu, W., Wang, J., Kumar, S., Chang, S.: Hashing with graphs. In: ICML (2011)

    Google Scholar 

  12. Moran, S., Lavrenko, V.: Sparse kernel learning for image annotation. In: ICMR (2014)

    Google Scholar 

  13. Moran, S., Lavrenko, V., Osborne, M.: Neighbourhood preserving quantisation for LSH. In: SIGIR (2013)

    Google Scholar 

  14. Oliva, A., Torralba, A.: Modeling the shape of the scene: A holistic representation of the spatial envelope. In: IJCV (2001)

    Google Scholar 

  15. Petrović, S., Osborne, M., Lavrenko, V.: Streaming first story detection with application to twitter. In: HLT (2010)

    Google Scholar 

  16. Raginsky, M., Lazebnik, S.: Locality-sensitive binary codes from shift-invariant kernels. In: NIPS (2009)

    Google Scholar 

  17. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: A large data set for nonparametric object and scene recognition. In: PAMI (2008)

    Google Scholar 

  18. van Rijsbergen, C.J.: Information Retrieval. Butterworth (1979)

    Google Scholar 

  19. Wang, J., Kumar, S., Chang, S.: Semi-supervised hashing for large-scale search. In: PAMI (2012)

    Google Scholar 

  20. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS (2008)

    Google Scholar 

  21. Zhang, D., Wang, J., Cai, D., Lu, J.: Self-taught hashing for fast similarity search. In: SIGIR (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Moran, S., Lavrenko, V. (2015). Graph Regularised Hashing. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds) Advances in Information Retrieval. ECIR 2015. Lecture Notes in Computer Science, vol 9022. Springer, Cham. https://doi.org/10.1007/978-3-319-16354-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16354-3_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16353-6

  • Online ISBN: 978-3-319-16354-3

  • eBook Packages: Computer ScienceComputer Science (R0)