Skip to main content

Identifying Perceptually Salient Features on 2D Shapes

  • Conference paper
Research in Shape Modeling

Abstract

Maintaining the local style and scale of 2D shape features during deformation, such as when elongating, compressing, or bending a shape, is essential for interactive shape editing. To achieve this, a necessary first step is to develop a robust classification method able to detect salient shape features, if possible in a hierarchical manner. Our aim is to overcome the limitations of existing techniques, which are not always able to detect what a user immediately identifies as a shape feature. Therefore, we first conduct a user study enabling us to learn how shape features are perceived. We then propose and compare several algorithms, all based on the medial axis transform or similar skeletal representations, to identify relevant shape features from this perceptual viewpoint. We discuss the results of each algorithm and compare them with those of the user study, leading to a practical solution for computing hierarchies of salient features on 2D shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications, Ann Arbor, pp. 249–266. ACM (2001)

    Google Scholar 

  2. Attali, D., Montanvert, A.: Computing and simplifying 2D and 3D continuous skeletons. Comput. Vis. Image Underst. 67(3), 261–273 (1997)

    Article  Google Scholar 

  3. Blum, H., Nagel, R.N.: Shape description using weighted symmetric axis features. Pattern Recognit. 10(3), 167–180 (1978)

    Article  MATH  Google Scholar 

  4. Blum, H., et al.: A transformation for extracting new descriptors of shape. Models Percept. Speech Vis. Form 19(5), 362–380 (1967)

    Google Scholar 

  5. Chazal, F., Lieutier, A.: The λ-medial axis. Graph. Models 67(4), 304–331 (2005)

    Article  MATH  Google Scholar 

  6. Giesen, J., Miklos, B., Pauly, M., Wormser, C.: The scale axis transform. In: Proceedings of the 25th Annual Symposium on Computational Geometry, Aarhus, pp. 106–115. ACM (2009)

    Google Scholar 

  7. Kimia, B., Tannenbaum, A., Zucker, S.: Toward a computational theory of shape: an overview. In: Faugeras, O. (ed.) Computer Vision – ECCV 90, Antibes. Volume 427 of Lecture Notes in Computer Science, pp. 402–407. Springer, Berlin/Heidelberg (1990)

    Chapter  Google Scholar 

  8. Kimia, B.B., Tannenbaum, A.R., Zucker, S.W.: Shapes, shocks, and deformations I: the components of two-dimensional shape and the reaction-diffusion space. Int. J. Comput. Vis. 15(3), 189–224 (1995)

    Article  Google Scholar 

  9. Leyton, M.: Symmetry-curvature duality. Comput. Vis. Graph. Image Process. 38(3), 327–341 (1987)

    Article  MATH  Google Scholar 

  10. Liu, L., Chambers, E.W., Letscher, D., Ju, T.: Extended grassfire transform on medial axes of 2D shapes. Comput. Aided Des. 43(11), 1496–1505 (2011)

    Article  Google Scholar 

  11. Miklos, B., Giesen, J., Pauly, M.: Discrete scale axis representations for 3D geometry. ACM Trans. Graph. 29(4), 101 (2010)

    Article  Google Scholar 

  12. Prasad, L.: Rectification of the chordal axis transform and a new criterion for shape decomposition. In: Discrete Geometry for Computer Imagery, Poitiers, pp. 263–275. Springer (2005)

    Google Scholar 

  13. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing shock graphs. In: International Conference on Computer Vision, Vancouver, vol. 1, pp. 755–762 (2001)

    Google Scholar 

  14. Shaked, D., Bruckstein, A.M.: Pruning medial axes. Comput. Vis. Image Underst. 69(2), 156–169 (1998)

    Article  Google Scholar 

  15. Sud, A., Foskey, M., Manocha, D.: Homotopy-preserving medial axis simplification. Int. J. Comput. Geom. Appl. 17(05), 423–451 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tagliasacchi, A.: Skeletal representations and applications (2013). arXiv preprint arXiv:1301.6809

    Google Scholar 

  17. Tam, R., Heidrich, W.: Feature-preserving medial axis noise removal. In: Computer Vision – ECCV 2002, Copenhagen, pp. 672–686. Springer (2002)

    Google Scholar 

  18. Zeng, J., Lakaemper, R., Yang, X., Li, X.: 2D shape decomposition based on combined skeleton-boundary features. In: Advances in Visual Computing, Las Vegas, pp. 682–691. Springer (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa J. Larsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland & The Association for Women in Mathematics

About this paper

Cite this paper

Larsson, L.J. et al. (2015). Identifying Perceptually Salient Features on 2D Shapes. In: Leonard, K., Tari, S. (eds) Research in Shape Modeling. Association for Women in Mathematics Series, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-16348-2_9

Download citation

Publish with us

Policies and ethics