Advertisement

Identifying Perceptually Salient Features on 2D Shapes

Conference paper
Part of the Association for Women in Mathematics Series book series (AWMS, volume 1)

Abstract

Maintaining the local style and scale of 2D shape features during deformation, such as when elongating, compressing, or bending a shape, is essential for interactive shape editing. To achieve this, a necessary first step is to develop a robust classification method able to detect salient shape features, if possible in a hierarchical manner. Our aim is to overcome the limitations of existing techniques, which are not always able to detect what a user immediately identifies as a shape feature. Therefore, we first conduct a user study enabling us to learn how shape features are perceived. We then propose and compare several algorithms, all based on the medial axis transform or similar skeletal representations, to identify relevant shape features from this perceptual viewpoint. We discuss the results of each algorithm and compare them with those of the user study, leading to a practical solution for computing hierarchies of salient features on 2D shapes.

Keywords

Shape Feature User Study Medial Axis Medial Branch Geometric Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications, Ann Arbor, pp. 249–266. ACM (2001)Google Scholar
  2. 2.
    Attali, D., Montanvert, A.: Computing and simplifying 2D and 3D continuous skeletons. Comput. Vis. Image Underst. 67(3), 261–273 (1997)CrossRefGoogle Scholar
  3. 3.
    Blum, H., Nagel, R.N.: Shape description using weighted symmetric axis features. Pattern Recognit. 10(3), 167–180 (1978)CrossRefzbMATHGoogle Scholar
  4. 4.
    Blum, H., et al.: A transformation for extracting new descriptors of shape. Models Percept. Speech Vis. Form 19(5), 362–380 (1967)Google Scholar
  5. 5.
    Chazal, F., Lieutier, A.: The λ-medial axis. Graph. Models 67(4), 304–331 (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    Giesen, J., Miklos, B., Pauly, M., Wormser, C.: The scale axis transform. In: Proceedings of the 25th Annual Symposium on Computational Geometry, Aarhus, pp. 106–115. ACM (2009)Google Scholar
  7. 7.
    Kimia, B., Tannenbaum, A., Zucker, S.: Toward a computational theory of shape: an overview. In: Faugeras, O. (ed.) Computer Vision – ECCV 90, Antibes. Volume 427 of Lecture Notes in Computer Science, pp. 402–407. Springer, Berlin/Heidelberg (1990)CrossRefGoogle Scholar
  8. 8.
    Kimia, B.B., Tannenbaum, A.R., Zucker, S.W.: Shapes, shocks, and deformations I: the components of two-dimensional shape and the reaction-diffusion space. Int. J. Comput. Vis. 15(3), 189–224 (1995)CrossRefGoogle Scholar
  9. 9.
    Leyton, M.: Symmetry-curvature duality. Comput. Vis. Graph. Image Process. 38(3), 327–341 (1987)CrossRefzbMATHGoogle Scholar
  10. 10.
    Liu, L., Chambers, E.W., Letscher, D., Ju, T.: Extended grassfire transform on medial axes of 2D shapes. Comput. Aided Des. 43(11), 1496–1505 (2011)CrossRefGoogle Scholar
  11. 11.
    Miklos, B., Giesen, J., Pauly, M.: Discrete scale axis representations for 3D geometry. ACM Trans. Graph. 29(4), 101 (2010)CrossRefGoogle Scholar
  12. 12.
    Prasad, L.: Rectification of the chordal axis transform and a new criterion for shape decomposition. In: Discrete Geometry for Computer Imagery, Poitiers, pp. 263–275. Springer (2005)Google Scholar
  13. 13.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing shock graphs. In: International Conference on Computer Vision, Vancouver, vol. 1, pp. 755–762 (2001)Google Scholar
  14. 14.
    Shaked, D., Bruckstein, A.M.: Pruning medial axes. Comput. Vis. Image Underst. 69(2), 156–169 (1998)CrossRefGoogle Scholar
  15. 15.
    Sud, A., Foskey, M., Manocha, D.: Homotopy-preserving medial axis simplification. Int. J. Comput. Geom. Appl. 17(05), 423–451 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Tagliasacchi, A.: Skeletal representations and applications (2013). arXiv preprint arXiv:1301.6809Google Scholar
  17. 17.
    Tam, R., Heidrich, W.: Feature-preserving medial axis noise removal. In: Computer Vision – ECCV 2002, Copenhagen, pp. 672–686. Springer (2002)Google Scholar
  18. 18.
    Zeng, J., Lakaemper, R., Yang, X., Li, X.: 2D shape decomposition based on combined skeleton-boundary features. In: Advances in Visual Computing, Las Vegas, pp. 682–691. Springer (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland & The Association for Women in Mathematics 2015

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada
  2. 2.University of Toulouse - INPT - IRITToulouseFrance
  3. 3.LJK, University Grenoble AlpesGrenobleFrance
  4. 4.Université de Lyon, Université Lyon 1, CNRS, LIRIS, UMR5205LyonFrance
  5. 5.Department of MathematicsUniversity of IowaIowa CityUSA
  6. 6.INRIA MéditerranéeSophia AntipolisFrance
  7. 7.Department of MathematicsFlorida State UniversityTallahasseeUSA
  8. 8.Department of Psychiatry, Computer Science and OrthodonticsUniversity of North Carolina at Chapel HillChapel HillUSA
  9. 9.Department of MathematicsUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations