Skip to main content

Skeleton-Based Recognition of Shapes in Images via Longest Path Matching

  • Conference paper
Research in Shape Modeling

Abstract

We present a novel image recognition method based on the Blum medial axis that identifies shape information present in unsegmented input images. Inspired by prior work matching from a library using only the longest path in the medial axis, we extract medial axes from shapes with clean contours and seek to recognize these shapes within “no isy” images. Recognition consists of matching longest paths from the segmented images into complicated geometric graphs, which are computed via edge detection on the (unsegmented) input images to obtain Voronoi diagrams associated to the edges. We present two approaches: one based on map-matching techniques using the weak Fréchet distance, and one based on a multiscale curve metric after reducing the Voronoi graphs to their minimum spanning trees. This paper serves as a proof of concept for this approach, using images from three shape databases with known segmentability (whale flukes, strawberries, and dancers). Our preliminary results on these images show promise, with both approaches correctly identifying two out of three shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We are not viewing the space of plane curves as linear, but the integral defined is analogous to Sobolev norms on function spaces and the integrand is analogous to a wavelet decomposition of γ. Additionally, the “norm” gives rise to a metric on curves in the standard way.

References

  1. Alt, H., Efrat, A., Rote, G., Wenk, C.: Matching planar maps. J. Algorithms 49(2), 262–283 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aslan, C., Tari, S.: An axis-based representation for recognition. In: ICCV, Beijing, pp. 1339–1346. IEEE Computer Society (2005)

    Google Scholar 

  3. Bai, X., Yang, X., Yu, D., Latecki, L.J.: Skeleton-based shape classification using path similarity. Int. J. Pattern Recognit. Artif. Intell. (IJPRAI) 22(4), 733–746 (2008)

    Google Scholar 

  4. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  5. Belongie, S., Mori, G., Malik, J.: Matching with shape contexts. In: Analysis and Statistics of Shapes, pp. 81–105. Birkhäuser (2005)

    Google Scholar 

  6. Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT, Cambridge (1967). http://citeseer.nj.nec.com/context/77000/0

  7. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking data. In: Proceedings of the 31st International Conference on Very Large Data Bases (VLDB’05), Trondheim, pp. 853–864. VLDB Endowment (2005)

    Google Scholar 

  8. Chen, D., Driemel, A., Guibas, L.J., Nguyen, A., Wenk, C.: Approximate map matching with respect to the Fréchet distance. In: Müller-Hannemann, M., Werneck, R.F.F. (eds.) ALENEX, San Francisco, pp. 75–83. SIAM (2011)

    Google Scholar 

  9. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 594–611 (2006)

    Article  Google Scholar 

  10. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 18(4), 377–388 (1996)

    Article  Google Scholar 

  11. Grompone von Gioi, R., Jakubowicz, J., Morel, J.-M., Randall, G.: LSD: a Line Segment Detector. Image Processing On Line (2012)

    Google Scholar 

  12. Gudmundsson, J., Smid, M.: Fréchet queries in geometric trees. In: Bodlaender, H.L., Italiano, G.F. (eds.) Algorithms – ESA 2013, Sophia Antipolis. Lecture Notes in Computer Science, vol. 8125, pp. 565–576. Springer, Berlin/Heidelberg (2013)

    Google Scholar 

  13. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993)

    Article  Google Scholar 

  14. Kushnarev, S.: Teichons: solitonlike geodesics on universal Teichmüller space. Exp. Math. 18, 325–336 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Leonard, K., Strawbridge, R., Lindsay, D., Barata, R., Dawson, M., Averion, L.: Minimal geometric representation and strawberry stem detection. In: 2013 13th International Conference on Computational Science and Its Applications (ICCSA), Ho Chi Minh City, pp. 144–149 (2013)

    Google Scholar 

  16. Leonard, K., Feiszli, M., Kushnarev, S.: Metric spaces of shapes and applications: compression, curve matching and low-dimensional representation. Geom. Imaging Comput. 1(2), 173–221 (2014)

    Article  Google Scholar 

  17. Leymarie, F.F., Kimia, B.B.: From the infinitely large to the infinitely small: applications of medial symmetry representations of shape. In: Siddiqi, K., Pizer, S.M. (eds.) Medial Representations: Mathematics, Algorithms and Applications. Computational Imaging and Vision, pp. 327–351. Kluwer Academic, Dordrecht (2008). ISBN:978-1-402-08657-1. http://opac.inria.fr/record=b1130467

  18. Lieutier, A.: Any open bounded subset of \(\mathbb{R}^{n}\) has the same homotopy type as its medial axis. Comput.-Aided Des. 36(11), 1029–1046 (2004)

    Article  Google Scholar 

  19. Lin, C.C., Chellappa, R.: Classification of partial 2-D shapes using Fourier descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 5, 686–690 (1987)

    Article  Google Scholar 

  20. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  21. Sebastian, T.B., Kimia, B.B.: Curves vs. skeletons in object recognition. Signal Process. 85(2), 247–263 (2005)

    Google Scholar 

  22. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Shock-based indexing into large shape databases. In: Proceedings of the 7th European Conference on Computer Vision-Part III (ECCV’02), Copenhagen, pp. 731–746. Springer, London (2002)

    Google Scholar 

  23. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 550–571 (2004)

    Article  Google Scholar 

  24. Sharon, E., Mumford, D.: 2D-shape analysis using conformal mapping. Int. J. Comput. Vis. 70, 55–75 (2006)

    Article  Google Scholar 

  25. Trinh, N.H., Kimia, B.B.: Skeleton search: category-specific object recognition and segmentation using a skeletal shape model. Int. J. Comput. Vis. 94(2), 215–240 (2011)

    Article  Google Scholar 

  26. Trouve, A., Miller, M.I., Younes, L.: On metrics and Euler-Lagrange equations of computational anatomy. Ann. Rev. Biomed. Eng. 4, 375–405 (2002)

    Article  Google Scholar 

  27. Wenk, C., Salas, R., Pfoser, D.: Addressing the need for map-matching speed: localizing global curve-matching algorithms. In: Proceedings of the 18th International Conference on Scientific and Statistical Database Management (SSDBM’06), Vienna, pp. 379–388. IEEE Computer Society, Washington, DC (2006)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Institute for Pure and Applied Mathematics, the Association for Women in Mathematics, Microsoft Research, the National Science Foundation, and the National Geospatial Agency for support, financial and otherwise, of this collaboration. Kathryn Leonard thanks Matt Feiszli for providing the initial Matlab code for the H 1∕2 metric for closed curves which was modified for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulce Bal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland & The Association for Women in Mathematics

About this paper

Cite this paper

Bal, G. et al. (2015). Skeleton-Based Recognition of Shapes in Images via Longest Path Matching. In: Leonard, K., Tari, S. (eds) Research in Shape Modeling. Association for Women in Mathematics Series, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-16348-2_6

Download citation

Publish with us

Policies and ethics