A Biomechanical Model of Cortical Folding

Conference paper
Part of the Association for Women in Mathematics Series book series (AWMS, volume 1)


A principal characteristic of the geometry of the brain is its folding pattern which is composed of gyri (outward hills) and sulci (inward valleys). We present a preliminary two-dimensional biomechanical model of cortical folding that is implemented computationally using finite elements. This model uses mechanical properties such as stress, strain, and body forces, corresponding to axonal tension, to model the shape of the brain during early cortical development. Despite its simplicity, the proposed model can be used to demonstrate the plausibility of tension generating cortical folds, as has been suggested in Van Essen (Nature 385(6614):313–318, 1997). In addition, this model is used to investigate folding patterns on different domain sizes.


Cortical Thickness Tangential Force Cortical Layer Radial Force Subcortical White Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the support of the Institute for Pure and AppliedMathematics (IPAM) at the University of California Los Angeles, the organizers of the program Women in Shape (WiSh): Modeling Boundaries of Objects in 2- and 3-Dimensions that was held at IPAM (in cooperation with Association for Women in Mathematics (AWM)) during July 2013, and the Mathematical Biosciences Institute (MBI) at Ohio State University.


  1. 1.
    Armstrong, E., Schleicher, A., Omran, H., Curtis, M., Zilles, K.: The ontogeny of human gyrification. Cereb. Cortex 5(1), 56–63 (1995)CrossRefGoogle Scholar
  2. 2.
    Barkovich, A.: Current concepts of polymicrogyria. Neuroradiology 52, 479–487 (2010)CrossRefGoogle Scholar
  3. 3.
    Bayly, P., Okamoto, R., Xu, G., Shi, Y., Taber, L.: A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain. Phys. Biol. 10, 016,005 (2013). doi: 10.1088/1478-3975/10/1/016005
  4. 4.
    Bickford, W.: A First Course in the Finite Element Method, 2nd edn. Irwin Publishers, Burr Ridges (1994)zbMATHGoogle Scholar
  5. 5.
    Chi, J., Dooling, E., Gilles, F.: Gyral development of the human brain. Ann. Neurol. 1, 86–93 (1977)CrossRefGoogle Scholar
  6. 6.
    Dobyns, W., Curry, C., Hoyme, H., Turlington, L., Ledbetter, D.: Clinical and molecular diagnosis of Miller-Dieker syndrome. Am. J. Hum. Genet. 48(3), 584–594 (1991)Google Scholar
  7. 7.
    Fischl, B., Dale, A.: Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. U.S.A. 97(20), 11,050–11,055 (2000)Google Scholar
  8. 8.
    Geng, G., Johnston, L., Yan, E., Britto, J., Smith, D., Walker, D., Egan, G.: Biomechanisms for modelling cerebral cortical folding. Med. Image Anal. 13, 920–930 (2009). doi: 10.1016/ CrossRefGoogle Scholar
  9. 9.
    Griffin, L.: The intrinsic geometry of the cerebral cortex. J. Theor. Biol. 166, 261–273 (1994)CrossRefGoogle Scholar
  10. 10.
    Hofman, M.: Size and shape of the cerebral cortex in mammals. I. The cortical surface. Brain Behav. Evol. 27(1), 28–40 (1985). doi: 10.1159/000118718 CrossRefGoogle Scholar
  11. 11.
    Im, K., Lee, J.M., Lyttelton, O., Kim, S., Evans, A., Kim, S.: Brain size and cortical structure in the adult human brain. Cereb. Cortex 18, 2181–2191 (2008). doi: 10.1093/cercor/bhm244 CrossRefGoogle Scholar
  12. 12.
    Kriegstein, A., Noctor, S., Martinez-Cerdeno, V.: Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat. Rev. Neurosci. 7, 883–890 (2006). doi: 10.1038/nrn2008 CrossRefGoogle Scholar
  13. 13.
    Kwon, Y., Bang, H.: The Finite Element Method Using MATLAB, 2nd edn. CRC, Boca Raton, Flordia (2000)Google Scholar
  14. 14.
    Lemaitre, H., Goldman, A., Sambataro, F., Verchinski, B., Meyer-Lindenberg, A., Weinberger, D., Mattay, V.: Normal age-related brain morphometric changes: Nonuniformity across cortical thickness, surface area and grey matter volume? Neurobiol. Aging 33(3), 617.e1–617.e9 (2012)Google Scholar
  15. 15.
    Nie, J., Guo, L., Li, G., Faraco, C., Miller, L., Liu, T.: A computational model of cerebral cortex folding. Cereb. Cortex 15(12), 1900–1913 (2005). doi: 10.1016/j.jtbi.2010.02.002 CrossRefGoogle Scholar
  16. 16.
    Raghavan, R., Lawton, W., Ranjan, S., Viswanathan, R.: A continuum mechanics-based model for cortical growth. J. Theor. Biol. 187(2), 285–296 (1997)CrossRefGoogle Scholar
  17. 17.
    Richman, D., Stewart, R., Hutchinson, J., Caviness, V.: Mechanical model of brain convolutional development. Science 189, 18–21 (1975)CrossRefGoogle Scholar
  18. 18.
    Soza, G., Grosso, R., Nimsky, C., Hastreiter, P., Fahlbusch, R., Greiner, G.: Determination of the elasticity parameters of brain tissue with combined simulation and registration. Int. J. Med. Robot. 1(3), 87–95 (2005)CrossRefGoogle Scholar
  19. 19.
    Striegel, D., Hurdal, M.: Chemically based mathematical model for development of cerebral cortical folding patterns. PLoS Comput. Biol. 5(9), e1000524 (2009)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Taylor, Z., Miller, K.: Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus. J. Biomech. 37(8), 1263–1269 (2004)CrossRefGoogle Scholar
  21. 21.
    Toole, G., Hurdal, M.: Turing models of cortical folding on exponentially and logistically growing domains. Comput. Math. Appl. 66(9), 1627–1642 (2013)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Toro, R., Burnod, Y.: A morphogenetic model for the development of cortical convolutions. Cereb. Cortex 15(12), 1900–1913 (2005)CrossRefGoogle Scholar
  23. 23.
    Tyler, W.: The mechanobiology of brain function. Nat. Rev. Neurosci. 13, 867–878 (2012)CrossRefGoogle Scholar
  24. 24.
    University of Wisconsin and Michigan State Comparative Mammalian Brain Collections: Comparative mammalian brain collections. Website: Last accessed: 10 Jan 2014
  25. 25.
    Van Essen, D.: A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385(6614), 313–318 (1997)Google Scholar
  26. 26.
    Wisniewski, K.: Down syndrome children often have brain with maturation delay, retardation of growth, and cortical dysgenesis. Am. J. Med. Genet. Suppl. 7, 274–281 (1990)Google Scholar
  27. 27.
    Wittek, A., Hawkins, T., Miller, K.: On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomech. Model. Mechanobiol. 8(1), 77–84 (2009)CrossRefGoogle Scholar
  28. 28.
    Xu, G., Knutsen, A., Dikranian, K., Kroenke, C., Bayly, P., Taber, L.: Axons pull on the brain, but tension does not drive cortical folding. J. Biomech. Eng. 132(7), 071,013 (2010). doi: 10.1115/1.4001683

Copyright information

© Springer International Publishing Switzerland & The Association for Women in Mathematics 2015

Authors and Affiliations

  1. 1.Department of MathematicsFlorida State UniversityTallahasseeUSA

Personalised recommendations