Skip to main content

A Biomechanical Model of Cortical Folding

  • Conference paper
Research in Shape Modeling

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 1))

  • 578 Accesses

Abstract

A principal characteristic of the geometry of the brain is its folding pattern which is composed of gyri (outward hills) and sulci (inward valleys). We present a preliminary two-dimensional biomechanical model of cortical folding that is implemented computationally using finite elements. This model uses mechanical properties such as stress, strain, and body forces, corresponding to axonal tension, to model the shape of the brain during early cortical development. Despite its simplicity, the proposed model can be used to demonstrate the plausibility of tension generating cortical folds, as has been suggested in Van Essen (Nature 385(6614):313–318, 1997). In addition, this model is used to investigate folding patterns on different domain sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong, E., Schleicher, A., Omran, H., Curtis, M., Zilles, K.: The ontogeny of human gyrification. Cereb. Cortex 5(1), 56–63 (1995)

    Article  Google Scholar 

  2. Barkovich, A.: Current concepts of polymicrogyria. Neuroradiology 52, 479–487 (2010)

    Article  Google Scholar 

  3. Bayly, P., Okamoto, R., Xu, G., Shi, Y., Taber, L.: A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain. Phys. Biol. 10, 016,005 (2013). doi:10.1088/1478-3975/10/1/016005

  4. Bickford, W.: A First Course in the Finite Element Method, 2nd edn. Irwin Publishers, Burr Ridges (1994)

    MATH  Google Scholar 

  5. Chi, J., Dooling, E., Gilles, F.: Gyral development of the human brain. Ann. Neurol. 1, 86–93 (1977)

    Article  Google Scholar 

  6. Dobyns, W., Curry, C., Hoyme, H., Turlington, L., Ledbetter, D.: Clinical and molecular diagnosis of Miller-Dieker syndrome. Am. J. Hum. Genet. 48(3), 584–594 (1991)

    Google Scholar 

  7. Fischl, B., Dale, A.: Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. U.S.A. 97(20), 11,050–11,055 (2000)

    Google Scholar 

  8. Geng, G., Johnston, L., Yan, E., Britto, J., Smith, D., Walker, D., Egan, G.: Biomechanisms for modelling cerebral cortical folding. Med. Image Anal. 13, 920–930 (2009). doi:10.1016/j.media.2008.12.005

    Article  Google Scholar 

  9. Griffin, L.: The intrinsic geometry of the cerebral cortex. J. Theor. Biol. 166, 261–273 (1994)

    Article  Google Scholar 

  10. Hofman, M.: Size and shape of the cerebral cortex in mammals. I. The cortical surface. Brain Behav. Evol. 27(1), 28–40 (1985). doi:10.1159/000118718

    Article  Google Scholar 

  11. Im, K., Lee, J.M., Lyttelton, O., Kim, S., Evans, A., Kim, S.: Brain size and cortical structure in the adult human brain. Cereb. Cortex 18, 2181–2191 (2008). doi:10.1093/cercor/bhm244

    Article  Google Scholar 

  12. Kriegstein, A., Noctor, S., Martinez-Cerdeno, V.: Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat. Rev. Neurosci. 7, 883–890 (2006). doi:10.1038/nrn2008

    Article  Google Scholar 

  13. Kwon, Y., Bang, H.: The Finite Element Method Using MATLAB, 2nd edn. CRC, Boca Raton, Flordia (2000)

    Google Scholar 

  14. Lemaitre, H., Goldman, A., Sambataro, F., Verchinski, B., Meyer-Lindenberg, A., Weinberger, D., Mattay, V.: Normal age-related brain morphometric changes: Nonuniformity across cortical thickness, surface area and grey matter volume? Neurobiol. Aging 33(3), 617.e1–617.e9 (2012)

    Google Scholar 

  15. Nie, J., Guo, L., Li, G., Faraco, C., Miller, L., Liu, T.: A computational model of cerebral cortex folding. Cereb. Cortex 15(12), 1900–1913 (2005). doi:10.1016/j.jtbi.2010.02.002

    Article  Google Scholar 

  16. Raghavan, R., Lawton, W., Ranjan, S., Viswanathan, R.: A continuum mechanics-based model for cortical growth. J. Theor. Biol. 187(2), 285–296 (1997)

    Article  Google Scholar 

  17. Richman, D., Stewart, R., Hutchinson, J., Caviness, V.: Mechanical model of brain convolutional development. Science 189, 18–21 (1975)

    Article  Google Scholar 

  18. Soza, G., Grosso, R., Nimsky, C., Hastreiter, P., Fahlbusch, R., Greiner, G.: Determination of the elasticity parameters of brain tissue with combined simulation and registration. Int. J. Med. Robot. 1(3), 87–95 (2005)

    Article  Google Scholar 

  19. Striegel, D., Hurdal, M.: Chemically based mathematical model for development of cerebral cortical folding patterns. PLoS Comput. Biol. 5(9), e1000524 (2009)

    Article  MathSciNet  Google Scholar 

  20. Taylor, Z., Miller, K.: Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus. J. Biomech. 37(8), 1263–1269 (2004)

    Article  Google Scholar 

  21. Toole, G., Hurdal, M.: Turing models of cortical folding on exponentially and logistically growing domains. Comput. Math. Appl. 66(9), 1627–1642 (2013)

    Article  MathSciNet  Google Scholar 

  22. Toro, R., Burnod, Y.: A morphogenetic model for the development of cortical convolutions. Cereb. Cortex 15(12), 1900–1913 (2005)

    Article  Google Scholar 

  23. Tyler, W.: The mechanobiology of brain function. Nat. Rev. Neurosci. 13, 867–878 (2012)

    Article  Google Scholar 

  24. University of Wisconsin and Michigan State Comparative Mammalian Brain Collections: Comparative mammalian brain collections. Website: http://www.brainmuseum.org/. Last accessed: 10 Jan 2014

  25. Van Essen, D.: A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385(6614), 313–318 (1997)

    Google Scholar 

  26. Wisniewski, K.: Down syndrome children often have brain with maturation delay, retardation of growth, and cortical dysgenesis. Am. J. Med. Genet. Suppl. 7, 274–281 (1990)

    Google Scholar 

  27. Wittek, A., Hawkins, T., Miller, K.: On the unimportance of constitutive models in computing brain deformation for image-guided surgery. Biomech. Model. Mechanobiol. 8(1), 77–84 (2009)

    Article  Google Scholar 

  28. Xu, G., Knutsen, A., Dikranian, K., Kroenke, C., Bayly, P., Taber, L.: Axons pull on the brain, but tension does not drive cortical folding. J. Biomech. Eng. 132(7), 071,013 (2010). doi:10.1115/1.4001683

Download references

Acknowledgements

The authors would like to acknowledge the support of the Institute for Pure and AppliedMathematics (IPAM) at the University of California Los Angeles, the organizers of the program Women in Shape (WiSh): Modeling Boundaries of Objects in 2- and 3-Dimensions that was held at IPAM (in cooperation with Association for Women in Mathematics (AWM)) during July 2013, and the Mathematical Biosciences Institute (MBI) at Ohio State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica K. Hurdal .

Editor information

Editors and Affiliations

Appendix

Appendix

4.1.1 Linear Quadrilateral Element

In the non-dimensional coordinate system (ξ, η) (see Fig. 4.7), the four shape functions can be expressed as

$$\displaystyle\begin{array}{rcl} N_{1} = \frac{1} {4}(1-\xi )(1-\eta )\;,\;\,N_{2} = \frac{1} {4}(1+\xi )(1-\eta )\;,& & {}\\ N_{3} = \frac{1} {4}(1+\xi )(1+\eta )\;,\;N_{4} = \frac{1} {4}(1-\xi )(1+\eta )\;.& & {}\\ \end{array}$$

At any point inside the element, \(\sum _{i=1}^{4}N_{i} = 1\). The displacement field is expressed as

$$\displaystyle\begin{array}{rcl} u =\sum _{ i=1}^{4}N_{ i}u_{i}\;,& & v =\sum _{ i=1}^{4}N_{ i}v_{i}\;. {}\\ \end{array}$$

The shapes of the interpolation functions N i are twisted planes whose height is 1 at i-th corner of the element and 0 at the other corners. The partial derivatives with respect to the variables are linear functions [4].

Fig. 4.7
figure 7

Linear quadrilateral element

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland & The Association for Women in Mathematics

About this paper

Cite this paper

Kim, S., Hurdal, M.K. (2015). A Biomechanical Model of Cortical Folding. In: Leonard, K., Tari, S. (eds) Research in Shape Modeling. Association for Women in Mathematics Series, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-16348-2_4

Download citation

Publish with us

Policies and ethics