Advertisement

Adaptation and Awareness in Robot Ensembles: Scenarios and Algorithms

  • Carlo Pinciroli
  • Michael Bonani
  • Francesco Mondada
  • Marco Dorigo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8998)

Abstract

This chapter presents a disaster recovery scenario that has been used throughout the ASCENS project as a reference to coordinate the study of distributed algorithms for robot ensembles. We first introduce the main traits and open problems in the design of behaviors for robot ensembles. We then present the scenario, highlighting its generality as a framework to compare algorithms and methodologies for distributed robotics. Subsequently, we summarize the main results of the research conducted in ASCENS that used the scenario. Finally, we describe an example algorithm that solves a selected problem in the scenario. The algorithm demonstrates how awareness at the ensemble level can be obtained without requiring awareness at the individual level.

Keywords

swarm robotics mobile robotics autonomous robotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge (1998)Google Scholar
  2. 2.
    Beni, G.: From Swarm Intelligence to Swarm Robotics. Swarm Robotics 3342, 1–9 (2005)Google Scholar
  3. 3.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press, New York (1999)zbMATHGoogle Scholar
  4. 4.
    Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G., Vaussard, F., Bleuler, H., Mondada, F.: The marXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4187–4193. IEEE Press, Piscataway (2010)Google Scholar
  5. 5.
    Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intelligence 7(1), 1–41 (2013)CrossRefGoogle Scholar
  6. 6.
    Brambilla, M., Pinciroli, C., Birattari, M., Dorigo, M.: Property-driven design for swarm robotics. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, pp. 139–146. International Foundation for Autonomous Agents and Multiagent Systems (2012)Google Scholar
  7. 7.
    Bruni, R., Corradini, A., Gadducci, F., Hölzl, M., Lafuente, A.L., Vandin, A., Wirsing, M.: Reconciling White-Box and Black-Box Perspectives on Behavioral Self-adaptation. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 163–184. Springer, Heidelberg (2015)Google Scholar
  8. 8.
    Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., Dorigo, M.: Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Autonomous Agents and Multi-Agent Systems 28(1), 101–125 (2014)CrossRefGoogle Scholar
  9. 9.
    Combaz, J., Bensalem, S., Tiezzi, F., Margheri, A., Pugliese, R., Kofron, J.: Correctness of Service Components and Service Component Ensembles. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 107–159. Springer, Heidelberg (2015)Google Scholar
  10. 10.
    Crespi, V., Galstyan, A., Lerman, K.: Top-down vs bottom-up methodologies in multi-agent system design. Autonomous Robots 24(3), 303–313 (2008)CrossRefGoogle Scholar
  11. 11.
    Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463 (2014)CrossRefGoogle Scholar
  12. 12.
    Dorigo, M., Floreano, D., Gambardella, L., Mondada, F., Nolfi, S., Baaboura, T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., Burnier, D., Campo, A., Christensen, A., Decugnière, A., Di Caro, G., Ducatelle, F., Ferrante, E., Förster, A., Guzzi, J., Longchamp, V., Magnenat, S., Martinez Gonzales, J., Mathews, N., Montes de Oca, M., O’Grady, R., Pinciroli, C., Pini, G., Rétornaz, P., Roberts, J., Sperati, V., Stirling, T., Stranieri, A., Stützle, T., Trianni, V., Tuci, E., Turgut, A., Vaussard, F.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine 20(4), 60–71 (2013)CrossRefGoogle Scholar
  13. 13.
    Dorigo, M., Birattari, M.: Swarm intelligence. Scholarpedia 2(9), 1462 (2007)CrossRefGoogle Scholar
  14. 14.
    Ducatelle, F., Di Caro, G., Förster, A., Bonani, M., Dorigo, M., Magnenat, S., Mondada, F., O’Grady, R., Pinciroli, C., Rétornaz, P., Trianni, V., Gambardella, L.M.: Cooperative navigation in robotic swarms. Swarm Intelligence 8(1), 1–33 (2014)CrossRefGoogle Scholar
  15. 15.
    Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe: A novel approach to the automatic design of control software for robot swarms. Swarm Intelligence, 1–24 (2014)Google Scholar
  16. 16.
    Gazi, V., Fidan, B.: Coordination and control of multi-agent dynamic systems: Models and approaches. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SAB 2006. LNCS, vol. 4433, pp. 71–102. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. The International Journal of Robotics Research 23(9), 939–954 (2004)CrossRefGoogle Scholar
  18. 18.
    Grassé, P.: La reconstruction du nid et les coordinations inter-individuelles chez bellicositermes natalensis et cubitermes sp. la théorie de la stigmergie: Essai d’interprétation des termites constructeurs. Insects Sociaux 6, 41–83 (1959)Google Scholar
  19. 19.
    Hamann, H.: Towards swarm calculus: Urn models of collective decisions and universal properties of swarm performance. Swarm Intelligence 7(2-3), 145–172 (2013)CrossRefGoogle Scholar
  20. 20.
    Hinchey, M.G., Sterritt, R., Rouff, C.: Swarms and swarm intelligence. Computer 40(4), 111–113 (2007)CrossRefGoogle Scholar
  21. 21.
    Hölzl, M., Gabor, T.: Reasoning and Learning for Awareness and Adaptation. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 249–290. Springer, Heidelberg (2015)Google Scholar
  22. 22.
    Hölzl, M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.: The Ensemble Development Life Cycle and Best Practices for Collective Autonomic Systems. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 325–354. Springer, Heidelberg (2015)Google Scholar
  23. 23.
    Howard, A., Matarić, M., Sukhatme, G.: Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In: Proceedings of the International Symposium on Distributed Autonomous Robotic Systems (DARS), pp. 299–308. Springer, New York (2002)Google Scholar
  24. 24.
    Self-organized, M.G.J.C.W.L.T.J.D.R.G.: aggregation without computation. International Journal of Robotics Research 33(8), 1145–1161 (2014)CrossRefGoogle Scholar
  25. 25.
    Magnenat, S., Longchamp, V., Bonani, M., Rétornaz, P., Germano, P., Bleuler, H., Mondada, F.: Affordable slam through the co-design of hardware and methodology. In: 2010 IEEE International Conference on Robotics and Automation (ICRA 2010), pp. 5395–5401. IEEE Press, Piscataway (2010)CrossRefGoogle Scholar
  26. 26.
    De Nicola, R., Latella, D., Lafuente, A.L., Loreti, M., Margheri, A., Massink, M., Morichetta, A., Pugliese, R., Tiezzi, F., Vandin, A.: The SCEL Language: Design, Implementation, Verification. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 3–71. Springer, Heidelberg (2015)Google Scholar
  27. 27.
    Noël, V., Zambonelli, F.: Methodological Guidelines for Engineering Self-organization and Emergence. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998, pp. 355–378. Springer, Heidelberg (2015)Google Scholar
  28. 28.
    Nolfi, S., Floreano, D.: Evolutionary robotics. MIT Press, Cambridge (2000)Google Scholar
  29. 29.
    Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm. Swarm Intelligence 2(1), 1–23 (2008)CrossRefGoogle Scholar
  30. 30.
    Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control 51(3), 401–420 (2006)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L.M., Dorigo, M.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence 6(4), 271–295 (2012)CrossRefGoogle Scholar
  32. 32.
    Ren, W., Beard, R.: Distributed consensus in multi-vehicle cooperative control: theory and applications. Springer, Berlin (2007)Google Scholar
  33. 33.
    Roberts, J., Stirling, T., Zufferey, J.C., Floreano, D.: 2.5d infrared range and bearing system for collective robotics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), IEEE Press, Piscataway (2009)Google Scholar
  34. 34.
    Schmickl, T.: How to engineer robotic organisms and swarms? In: Bio-Inspired Self-Organizing Robotic Systems, pp. 25–52. Springer, Berlin (2011)CrossRefGoogle Scholar
  35. 35.
    Støy, K.: Using situated communication in distributed autonomous mobile robots. In: Proceedings of the 7th Scandinavian Conference on Artificial Intelligence, pp. 44–52. IOS Press, Amsterdam (2001)Google Scholar
  36. 36.
    Sutton, R.S., Barto, A.G.: Introduction to reinforcement learning. MIT Press, Cambridge (1998)Google Scholar
  37. 37.
    Thrun, S., Leonard, J.J.: Simultaneous localization and mapping. In: Springer handbook of robotics, pp. 871–889. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  38. 38.
    Wirsing, M., Hölzl, M., Tribastone, M., Zambonelli, F.: ASCENS: Engineering Autonomic Service-Component Ensembles. In: Beckert, B., Damiani, F., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2011. LNCS, vol. 7542, pp. 1–24. Springer, Heidelberg (2013), http://www.pst.ifi.lmu.de/~hoelzl/fmco-2011.pdf CrossRefGoogle Scholar
  39. 39.
    Yamins, D.: Towards a theory of local to global in distributed multi-agent systems (i). In: Proceedings of the fourth international joint conference on autonomous agents and multiagent systems (AAMAS’04), pp. 183–190. ACM Press, New York (2005)CrossRefGoogle Scholar
  40. 40.
    Yamins, D.: Towards a theory of local to global in distributed multi-agent systems (ii). In: Proceedings of the fourth international joint conference on autonomous agents and multiagent systems (AAMAS’04), pp. 191–198. ACM Press, New York (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Carlo Pinciroli
    • 1
  • Michael Bonani
    • 2
  • Francesco Mondada
    • 3
  • Marco Dorigo
    • 1
  1. 1.Université Libre de BruxellesBelgium
  2. 2.Association MobsyaSwitzerland
  3. 3.École Polytechnique Fédérale de LausanneSwitzerland

Personalised recommendations