Advertisement

Practical Attacks on AES-like Cryptographic Hash Functions

  • Stefan Kölbl
  • Christian Rechberger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8895)

Abstract

Despite the great interest in rebound attacks on AES-like hash functions since 2009, we report on a rather generic, albeit keyschedule-dependent, algorithmic improvement: A new message modification technique to extend the inbound phase, which even for large internal states makes it possible to drastically reduce the complexity of attacks to very practical values for reduced-round versions. Furthermore, we describe new and practical attacks on Whirlpool and the recently proposed GOST R hash function with one or more of the following properties: more rounds, less time/memory complexity, and more relevant model. To allow for easy verification, we also provide a source-code for them.

Keywords

Hash functions Cryptanalysis Collisions Whirlpool GOST R Streebog Practical attacks 

Supplementary material

References

  1. 1.
    Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., Shamir, A.: Key recovery attacks of practical complexity on AES-256 variants with up to 10 rounds. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 299–319. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  2. 2.
    Barreto, P., Rijmen, V.: The Whirlpool hashing function. In: First open NESSIE Workshop, Leuven, Belgium, vol. 13, p. 14 (2000)Google Scholar
  3. 3.
    Dolmatov, V., Degtyarev, A.: GOST R 34.11-2012: Hash Function (2013). http://tools.ietf.org/html/rfc6986
  4. 4.
    Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating fundamental security requirements on whirlpool: improved preimage and collision attacks. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 562–579. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  5. 5.
    Wang, Z., Yu, H., Wang, X.: Cryptanalysis of GOST R Hash Function. Cryptology ePrint Archive, Report 2013/584 (2013). http://eprint.iacr.org/
  6. 6.
    AlTawy, R., Kircanski, A., Youssef, A.M.: Rebound Attacks on Stribog. Cryptology ePrint Archive, Report 2013/539 (2013). http://eprint.iacr.org/
  7. 7.
    Kölbl, S., Mendel, F.: Practical attacks on the maelstrom-0 compression function. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 449–461. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  8. 8.
    Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of the reduced Grøstl compression function, ECHO permutation and AES block cipher. In: Jacobson Jr, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 16–35. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  9. 9.
    Barreto, P.S.L.M., Nikov, V., Nikova, S., Rijmen, V., Tischhauser, E.: Whirlwind: a new cryptoaphic hash function. Des. Codes Crypt. 56(2–3), 141–162 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack: cryptanalysis of reduced whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  11. 11.
    Lamberger, M., Mendel, F., Schläffer, M., Rechberger, C., Rijmen, V.: The rebound attack and subspace distinguishers: application to whirlpool. J. Cryptol., 1–40 (2013)Google Scholar
  12. 12.
    Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound Distinguishers: Results on the Full Whirlpool Compression Function. [21] 126–143Google Scholar
  13. 13.
    Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: improved attacks for AES-like permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–383. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  14. 14.
    Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved rebound attack on the finalist Grøstl. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 110–126. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  15. 15.
    Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved cryptanalysis of AES-like permutations. J. Cryptology 27(4), 772–798 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schläffer, M.: Rebound Attack on the Full Lane Compression Function. [21] 106–125Google Scholar
  17. 17.
    Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of composite problems, with applications to cryptanalysis, knapsacks, and combinatorial search problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 719–740. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  18. 18.
    Naya-Plasencia, M.: How to improve rebound attacks. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 188–205. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  19. 19.
    Kazymyrov, O., Kazymyrova, V.: Algebraic Aspects of the Russian Hash Standard GOST R 34.11-2012. Cryptology ePrint Archive, Report 2013/556 (2013). http://eprint.iacr.org/
  20. 20.
  21. 21.
    Matsui, M. (ed.): ASIACRYPT 2009. LNCS, vol. 5912. Springer, Heidelberg (2009) zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Technical University of DenmarkKongens LyngbyDenmark

Personalised recommendations