Skip to main content

Proofs Using Results from Cyclotomy

  • Chapter
The Quadratic Reciprocity Law
  • 1305 Accesses

Abstract

1. Let ρ be a primitive root of the equation \(\frac{x^{p-1}-1} {x-1} = 0\), where p is a positive odd prime, and let g be a primitive root modulo p; then we can order the roots of \(\frac{x^{p-1}-1} {x-1} = 0\) in the following way:

$$\displaystyle{\rho,\rho ^{g^{2} },\rho ^{g^{4} },\ldots,\rho ^{g^{p-3} }\quad \text{and}\quad \rho ^{g},\rho ^{g^{3} },\ldots,\rho ^{g^{p-2} }.}$$

The expressions

$$\displaystyle{y_{1} =\rho ^{g} +\rho ^{g^{3} } +\ldots +\rho ^{g^{p-2} },\quad y_{2} =\rho +\rho ^{g^{2} } +\ldots +\rho ^{g^{p-3} }}$$

are called quadratic1 periods of the cyclotomic equation \(\frac{x^{p-1}-1} {x-1} = 0\). Using their property

$$\displaystyle{y_{1} - y_{2} = (\rho ^{-1}-\rho )(\rho ^{-3} -\rho ^{3})\cdots (\rho ^{-p+2} -\rho ^{p-2})}$$

and the relation

$$\displaystyle{(x -\rho ^{2})(x -\rho ^{4})\cdots (x -\rho ^{2(p-1)}) = x^{p-1} + x^{p-2} +\ldots +1}$$

we find

$$\displaystyle{(y_{1} - y_{2})^{2} = (-1)^{\frac{p-1} {2} }p.}$$

Now y 1 + y 2 = −1, hence we get

$$\displaystyle{y_{1}y_{2} = \frac{1 - (-1)^{\frac{p-1} {2} }p} {4}.}$$

Thus the two periods y 1 and y 2 are roots of the quadratic equation \(f(x) = x^{2} + x + \frac{1} {4}(1 - (-1)^{\frac{p-1} {2} }p) = 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    [FL] Baumgart uses the expression \(\frac{p-1} {2}\)-termed periods.

  2. 2.

    [FL] The sums G are nowadays called Gauss sums.

  3. 3.

    The following developments are valid for arbitrary odd integers.

  4. 4.

    [FL] Such sums are nowadays called “multiple Jacobi sums”.

  5. 5.

    If the x run through 0, 1, …, p − 1, and if we denote the corresponding values n by N, then N q 0 + N q a + N q b = p q. This formula can also be used.

  6. 6.

    We get similar formulas for n q 0, n q , N q 0, N q , N q .

Bibliography

  1. A.L. Cauchy, Sur la théorie des nombres, Bull. de Férussac 12 (1829), 205–221; Mém. de l’Inst. 18, p. 451; Œuvres S. 2, II, 88–107; cf. p.

    Google Scholar 

  2. G. Eisenstein, Neuer und elementarer Beweis des Legendre’schen Reciprocitäts-Gesetzes, J. Reine Angew. Math. 27 (1844), 322–329; Math. Werke I, 100–107; cf. p.

    Google Scholar 

  3. G. Eisenstein, La loi de réciprocité tirée des formules de Mr. Gauss, sans avoir déterminée préalablement la signe du radical, J. Reine Angew. Math. 28 (1844), 41–43; Math. Werke I, 114–116; cf. p.

    Google Scholar 

  4. C.F. Gauss, Summatio serierum quarundam singularium, Comment. Soc. regiae sci. Göttingen 1811; Werke II, p. 9–45; cf. p.

    Google Scholar 

  5. C.F. Gauss, Theorematis fundamentalis in doctrina de residuis quadraticis demonstrationes et amplicationes novae, 1818; Werke II, 47–64, in particular p. 55; cf. p.

    Google Scholar 

  6. C.F. Gauß, Nachlass, Opera II, p. 233; cf. p.

    Google Scholar 

  7. V.A. Lebesgue, Démonstration nouvelle élémentaire de la loi de réciprocité de Legendre, par. M. Eisenstein, précédée et suivie de remarques sur d’autres démonstrations, que peuvent être tirées du même principe, J. math. pures appl. 12 (1847), 457–473; cf. p.

    Google Scholar 

  8. V.A. Lebesgue, Note sur les congruences, C. R. Acad. Sci. Paris 51 (1860), 9–13; cf. p.

    Google Scholar 

  9. A.M. Legendre, Théorie des nombres, 3rd ed. vol. II (1830); cf. p.

    Google Scholar 

  10. J. Liouville, Sur la loi de réciprocité dans la théorie des résidus quadratiques, J. math. pure appl. (I), 12 (1847), 95–96; cf. p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baumgart, O. (2015). Proofs Using Results from Cyclotomy. In: The Quadratic Reciprocity Law. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-16283-6_5

Download citation

Publish with us

Policies and ethics