Affine Equivalency and Nonlinearity Preserving Bijective Mappings over \(\mathbb {F}_2\)

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9061)

Abstract

We first give a proof of an isomorphism between the group of affine equivalent maps and the automorphism group of Sylvester Hada-mard matrices. Secondly, we prove the existence of new nonlinearity preserving bijective mappings without explicit construction. Continuing the study of the group of nonlinearity preserving bijective mappings acting on \(n\)-variable Boolean functions, we further give the exact number of those mappings for \(n\,\le \,6\). Moreover, we observe that it is more beneficial to study the automorphism group of bijective mappings as a subgroup of the symmetric group of the \(2^{n}\) dimensional \(\mathbb {F}_{2}\)-vector space due to the existence of non-affine mapping classes.

Keywords

Cryptographic Boolean functions Affine equivalence Nonlinearity preserving mappings Sylvester Hadamard matrices 

References

  1. 1.
    Braeken, A., Nikova, S., Borissov, Y.: Classification of cubic boolean functions in \(7\) variables. In: Proceedings of 26th Symposium on Information Theory in the Benelux, Brussels, Belgium, pp. 285–292 (2005)Google Scholar
  2. 2.
    Braeken, A., Borissov, Y., Nikova, S., Preneel, B.: Classification of boolean functions of 6 variables or less with respect to some cryptographic properties. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 324–334. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  3. 3.
    Budaghyan, L., Carlet, C.: CCZ-equivalence and Boolean functions. Cryptology ePrint Archive, Report 2009/063 (2009)Google Scholar
  4. 4.
    Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptgr. 15, 125–156 (1998)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Carlet, C., Mesnager, S.: On Dillon’s class H of bent functions, Niho bent functions and O-Polynomials. Cryptology ePrint Archive, Report 2010/567 (2010)Google Scholar
  6. 6.
    Crama, Y., Hammer, P.L.: Boolean Models and Methods in Mathematics, Computer Science, and Engineering. Encyclopedia of Mathematics and its Applications, vol. 134. Cambridge University Press, Cambridge (2010)CrossRefMATHGoogle Scholar
  7. 7.
    De Launey, W., Flannery, D.L.: Algebraic Design Theory, vol. 175. American Mathematical Society, Providence (2011) MATHGoogle Scholar
  8. 8.
    Denev, J., Tonchev, V.: On the number of equivalence classes of Boolean functions under a transformation group (Corresp.). IEEE Trans. Inf. Theory 26(5), 625–626 (1980)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Dillon, J.: A survey of bent functions. NSA Tech. J., 191–215 (1972). Special IssueGoogle Scholar
  10. 10.
    Fuller, J.E.: Analysis of affine equivalent Boolean functions for cryptography. Ph.D. thesis, Queensland University of Technology, Queensland, Australia (2003)Google Scholar
  11. 11.
    Hadamard, J.: Résolution d’une question relative aux déterminants. Bull. Sci. Math. 2(17), 240–246 (1893)Google Scholar
  12. 12.
    Hall Jr., M.: Note on the Mathieu group \(\cal {M}_{12}\). Arch. Math. 13, 334–340 (1962)CrossRefMATHGoogle Scholar
  13. 13.
    Harrison, M.A.: The number of classes of invertible Boolean functions. J. ACM (JACM) 10(1), 25–28 (1963)CrossRefMATHGoogle Scholar
  14. 14.
    Harrison, M.A.: On the classification of Boolean functions by the general linear and affine groups. J. Soc. Ind. Appl. Math. 12(2), 285–299 (1964)CrossRefMATHGoogle Scholar
  15. 15.
    Hou, X.D.: \(AGL(m, 2)\) acting on \(R(r, m)/R(s, m)\). J. Algebra 171(3), 921–938 (1995)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Langevin, P., Leander, G.: Counting all bent functions in dimension eight \(99270589265934370305785861242880\). Des. Codes Cryptgr. 59(1–3), 193–205 (2010)MathSciNetGoogle Scholar
  17. 17.
    Leon, J.S.: An algorithm for computing the automorphism group of a Hadamard matrix. J. Comb. Theory Ser. A 27(3), 289–306 (1979)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 2nd edn. North-holland Publishing Company, Amsterdam (1978) Google Scholar
  19. 19.
    Maiorana, J.A.: A classification of the cosets of the Reed-Muller code \(R(1, 6)\). Math. Comput. 57(195), 403–414 (1991)MATHMathSciNetGoogle Scholar
  20. 20.
    Meier, W., Staffelbach, O.: Nonlinearity criteria for cryptographic functions. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 549–562. Springer, Heidelberg (1990) CrossRefGoogle Scholar
  21. 21.
    Pieprzyk, J., Finkelstein, G.: Towards effective nonlinear cryptosystem design. IEE Proc. E Comput. Digit. Tech. 135(6), 325–335 (1988)CrossRefGoogle Scholar
  22. 22.
    Preneel, B.: Analysis and design of cryptographic hash functions. Ph.D. thesis, Katholieke Universiteit Leuven, Leuven, Belgium, January 1993Google Scholar
  23. 23.
    Rothaus, O.S.: On “bent” functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Seberry, J., Zhang, X.-M.: Highly nonlinear 0–1 balanced Boolean functions satisfying strict avalanche criterion (extended abstract). In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 143–155. Springer, Heidelberg (1993) CrossRefGoogle Scholar
  25. 25.
    Sertkaya, İ.: Nonlinearity preserving post-transformations. Master’s thesis, Middle East Technical University, Ankara, Turkey, June 2004Google Scholar
  26. 26.
    Sertkaya, İ., Doğanaksoy, A.: On nonlinearity preserving bijective transformations. In: Proceedings of the National Cryptology Symposium II, Ankara, Turkey, pp. 27–36 (2006)Google Scholar
  27. 27.
    Sertkaya, İ., Doğanaksoy, A.: Some results on nonlinearity preserving bijective transformations. In: Proceedings of BFCA 2007 Conference, Paris, France, pp. 27–42 (2007)Google Scholar
  28. 28.
    Sertkaya, İ., Doğanaksoy, A.: On the affine equivalence and nonlinearity preserving bijective mappings. Cryptology ePrint Archive, Report 2010/655 (2010)Google Scholar
  29. 29.
    Stone, H.S., Jackson, C.L.: Structures of the affine families of switching functions. IEEE Trans. Comput. 3, 251–257 (1969)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Strazdins, I.: Universal affine classification of Boolean functions. Acta Applicandae Mathematica 46(2), 147–167 (1997)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Sylvester, J.J.: Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tessellated pavements in two or more colors, with applications to Newton’s rule, ornamental tile-work, and the theory of numbers. Philos. Mag. 34, 461–475 (1867)Google Scholar
  32. 32.
    Tokareva, N.: Automorphism group of the set of all bent functions. Cryptology ePrint Archive, Report 2010/255 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Applied MathematicsMiddle East Technical UniversityAnkaraTurkey
  2. 2.Mathematical and Computational SciencesTÜBİTAK BİLGEM UEKAEGebzeTurkey
  3. 3.Department of MathematicsMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations