Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE TKDE 17(6), 734–749 (2005)
Google Scholar
Anderson, M., Antenucci, D., Bittorf, V., Burgess, M., Cafarella, M.J., Kumar, A., Niu, F., Park, Y., R, C., Zhang, C.: Brainwash: A data system for feature engineering. CIDR (2013). www.cidrdb.org
Anderson, M., Magruder, J.: Learning from the crowd: Regression discontinuity estimates of the effects of an online review database. The Economic Journal 122(563), 957–989 (2012)
CrossRef
Google Scholar
Crandall, D.J., Backstrom, L., Cosley, D., Suri, S., Huttenlocher, D., Kleinberg, J.: Inferring social ties from geographic coincidences. PNAS 107(52), 22436–22441 (2010)
CrossRef
Google Scholar
Golder, S.A., Macy, M.W.: Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 333(6051), 1878–1881 (2011)
CrossRef
Google Scholar
Gupta, N., Di Fabbrizio, G., Haffner, P.: Capturing the stars: Predicting ratings for service and product reviews, pp. 36–43. SS 2010. ACL, Stroudsburg (2010)
Google Scholar
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems (2009)
Google Scholar
Kramer, A.D., Guillory, J.E., Hancock, J.T.: Experimental evidence of massive-scale emotional contagion through social networks. PNAS, p. 201320040 (2014)
Google Scholar
Markovitch, S., Rosenstein, D.: Feature generation using general constructor functions. Machine Learning 49, 59–98 (2002)
CrossRef
MATH
Google Scholar
Pazzani, M.J., Billsus, D.: Content-Based Recommendation Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007)
CrossRef
Google Scholar
Qu, L., Ifrim, G., Weikum, G.: The bag-of-opinions method for review rating prediction from sparse text patterns. COLING 2010, pp. 913–921. ACL (2010)
Google Scholar
Rendle, S.: Factorization machines with libfm. ACM Trans. Intell. Syst. Tech. 3(3), 1–22 (2012)
CrossRef
Google Scholar
Seroussi, Y., Bohnert, F., Zukerman, I.: Personalised rating prediction for new users using latent factor models. HT 2011, pp. 47–56. ACM, New York (2011)
Google Scholar
Statistics, L.B., Breiman, L.: Random forests. In: Machine Learning, pp. 5–32 (2001)
Google Scholar
Sun, L., Axhausen, K.W., Lee, D.H., Huang, X.: Understanding metropolitan patterns of daily encounters. PNAS 110(34), 13774–13779 (2013)
CrossRef
Google Scholar
Sun, M.: How does the variance of product ratings matter? Management Science 58(4), 696–707 (2012)
CrossRef
Google Scholar
Symeonidis, P., Tiakas, E., Manolopoulos, Y.: Product recommendation and rating prediction based on multi-modal social networks. RecSys 2011, pp. 61–68. ACM (2011)
Google Scholar
Tiroshi, A., Berkovsky, S., Kaafar, M.A., Vallet, D., Chen, T., Kuflik, T.: Improving business rating predictions using graph based features. IUI 2014, pp. 17–26. ACM, New York (2014)
Google Scholar
Yildirim, H., Krishnamoorthy, M.S.: A random walk method for alleviating the sparsity problem in collaborative filtering. RecSys 2008, pp. 131–138. ACM, New York (2008)
Google Scholar
Yu, K., Schwaighofer, A., Tresp, V., Xu, X., Kriegel, H.P.: Probabilistic memory-based collaborative filtering. IEEE TKDE 16(1), 56–69 (2004)
Google Scholar