Skip to main content

Dissipation, Noise and Adaptive Systems

  • Chapter
Complex and Adaptive Dynamical Systems
  • 2416 Accesses

Abstract

Dynamical systems are generically not isolated but interact with the embedding environment and one speaks of noise whenever the impact of the dynamics of the environment cannot be predicted. The dynamical flow slows down when energy is dissipated to the environment, approaching attracting states which may be regular, such as fixpoints or limit cycle, or irregular, such as chaotic attractors. Adaptive systems alternate between phases when they dissipate energy and times when energy is taken up from the environment, with the steady state being characterized by a balance between these two opposing processes. In this chapter an introduction to adaptive, dissipative and stochastic systems will be given together with important examples from the real of noise controlled dynamics, like diffusion, random walks and stochastic escape and resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term isocline stands for “equal slope” in ancient Greek.

  2. 2.

    Note: \(\int e^{-x^{2}/a }\mathrm{d}x = \sqrt{a\pi }\) and \(\lim _{a\rightarrow 0}\exp (-x^{2}/a)/\sqrt{a\pi } =\delta (x)\).

References

  • Benzit, R., Sutera, A., Vulpiani, A. 1981 The mechanism of stochastic resonance. Journal of Physics A 14, L453–L457.

    Google Scholar 

  • Boccara, N. 2003 Modeling Complex Systems. Springer, Berlin.

    Google Scholar 

  • Brockmann, D., Hufnagel, L., Geisel, T. 2006 The scaling laws of human travel. Nature 439, 462.

    Google Scholar 

  • Devaney, R.L. 1989 An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Einstein, A. 1905 Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 17, 549.

    Google Scholar 

  • Eriksen, K.A., Simonsen, I., Maslov, S., Sneppen, K. 2003 Modularity and extreme edges of the internet. Physical Review Letters 90, 148701.

    Google Scholar 

  • Erneux, T. 2009 Applied Delay Differential Equations. Springer, New York.

    Google Scholar 

  • Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F. 1998 Stochastic resonance. Review of Modern Physics 70, 223–287.

    Google Scholar 

  • Goldstein, H. 2002 Classical Mechanics. 3rd Edition, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Gutzwiller, M.C. 1990 Chaos in Classical and Quantum Mechanics. Springer, New York.

    Google Scholar 

  • Katok, A., Hasselblatt, B. 1995 Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Langevin, P. 1908 Sur la théorie du mouvement brownien. Comptes Rendus 146, 530–532.

    Google Scholar 

  • Lasota, A., Mackey, M.C. 1994 Chaos, Fractals, and Noise – Stochastic Aspects of Dynamics. Springer, New York.

    Google Scholar 

  • Lorenz, E.N. 1963 Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20, 130–141.

    Google Scholar 

  • Metzler, R., Klafter J. 2000 The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Physics Reports 339, 1.

    Google Scholar 

  • Ott, E. 2002 Chaos in Dynamical Systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Pikovsky, A.S., Kurths, J. 1997 Coherence resonance in a noise-driven excitable system. Physical Review Letters 78, 775.

    Google Scholar 

  • Ross, S.M. 1982 Stochastic Processes. Wiley, New York.

    Google Scholar 

  • Schuster, H.G. 2001 Complex Adaptive Systems. Scator, Saarbrücken.

    Google Scholar 

  • Schuster, H.G., Just, W. 2005 Deterministic Chaos. 4th Edition, Wiley-VCH, New York.

    Google Scholar 

  • Schweitzer, F. 2003 Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences. Springer, New York.

    Google Scholar 

  • Strogatz, S.H. 1994 Nonlinear Systems and Chaos. Perseus Publishing, Cambridge, MA.

    Google Scholar 

  • Viswanathan, G.M., Afanasyev, V., Buldyrev, S.V., Murphy, E.J., Prince, P.A., Stanley, H.E. 1996 Lévy flight search patterns of wandering albatrosses. Nature 381, 413.

    Google Scholar 

  • Wang, D.L. 1999 Relaxation oscillators and networks In Webster, J.G. (ed.), Encyclopedia of Electrical and Electronic Engineers, pp. 396–405. Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gros, C. (2015). Dissipation, Noise and Adaptive Systems. In: Complex and Adaptive Dynamical Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-16265-2_3

Download citation

Publish with us

Policies and ethics