Abstract
In this work we introduce a method for building interval-valued negations using the characterization theorem for strong negations which was proposed by Trillas in 1979. We also show that interval type-2 fuzzy sets are a three dimensional representation of interval-valued fuzzy sets and we analyze the problems to build complementation for such interval type-2 fuzzy sets. We finally propose a method to construct this complementation.
Keywords
- Interval-valued negation
- Interval-valued fuzzy sets
- Interval type 2 fuzzy set
- Complementation.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Arnauld, T., Tano, S.: Interval-valued fuzzy backward reasoning. IEEE Trans. Fuzzy Syst. 3(4), 425–437 (1995)
Atanassov, K.: Intuitionistic fuzzy sets, VII ITKR’s Session. Deposed in Central Science and Technical Library of Bulgaria Academy of Science, Sofia, June (1983)
Atanassov, K.: Intuitionistic Fuzzy Sets. Theory and Applications. Physica-Verlag, Heidelberg (1999)
Bedregal, B., Beliakov, G., Bustince, H., Calvo, T., Mesiar, R., Paternain, D.: A class of fuzzy multisets with a fixed number of memberships. Inf. Sci. 189, 1–17 (2012)
Burillo, P., Bustince, H.: Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets Syst. 78, 305–3016 (1996)
Burillo, P., Bustince, H.: Orderings in the referential set induced by an intuitionistic fuzzy relation. Notes IFS 1, 93–103 (1995)
Burillo, P., Bustince, H.: Construction theorems for intuitionistic fuzzy sets. Fuzzy Sets Syst. 84, 271–281 (1996)
Bustince, H., Barrenechea, E., Pagola, M.: Generation of interval-valued fuzzy and Atanassov’s intuitionistic fuzzy connectives from fuzzy connectives and from K(alpha) operators: laws for conjunctions and disjunctions, amplitude. Int. J. Intell. Syst. 23(6), 680–714 (2008)
Bustince, H., Galar, M., Bedregal, B., Kolesárová, A., Mesiar, R.: A new approach to interval-valued Choquet integrals and the problem of ordering in interval-valued fuzzy set applications. IEEE Trans. Fuzzy Syst. 21(6), 1150–1162 (2013)
Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Generation of linear orders for intervals by means of aggregation functions. Fuzzy Sets Syst. 220(1), 69–77 (2013)
Bustince, H.: Indicator of inclusion grade for interval-valued fuzzy sets. Application to approximate reasoning based on interval-valued fuzzy sets. Int. J. Approx. Reason. 23(3), 137–209 (2000)
Bustince, H., Burillo, P.: Mathematical analysis of interval-valued fuzzy relations: application to approximate reasoning. Fuzzy Sets Syst. 113, 205–219 (2000)
Bustince, H., Burillo, P.: Structures on intuitionistic fuzzy relations. Fuzzy Sets Syst. 78, 293–303 (1996)
Bustince, H., Kacprzyk, J., Mohedano, V.: Intuitionistic fuzzy generators. Application to Intuitionistic fuzzy complementation. Fuzzy Sets Syst. 114, 485–504 (2000)
Bustince, H., Montero, J., Pagola, M., Barrenechea, E., Gómez, D.: A survey on interval-valued fuzzy sets. In: Pedrycz, W., Skowron, A., Kreinovichedrycz, V. (eds.) Handbook of Granular Computing. Wiley, New York (2007)
Bustince, H., Herrera, F., Montero, J. (eds.): Fuzzy Sets and Their Extensions: Representation, Aggregation and Models. Springer, Berlin (2007)
Bustince, H., Fernandez, J., Hagras, H., Herrera, F., Pagola, M., Barrenechea, E.: Interval type-2 fuzzy sets are generalization of IVFSs: towards a wider view on their relationship, in Press. IEEE Trans. Fuzzy Syst. doi:10.1109/TFUZZ.2014.2362149
Chen, S.M., Hsiao, W.H., Jong, W.T.: Bidirectional approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst. 91, 339–353 (1997)
Deschrijver, G., Cornelis, C., Kerre, E.E.: On the representation of intuitionistic fuzzy T-Norms and T-Conorms. IEEE Trans. Fuzzy Syst. 12(1), 45–61 (2004)
Goguen, J.A.: L-Fuzzy sets. J. Math. Anal. Appl. 18(1), 623–668 (1967)
Gorzalczany, M.B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst. 21, 1–17 (1987)
Grattan-Guinness, I.: Fuzzy membership mapped onto interval and many-valued quantities. Zeitschrift für mathematische Logik und Grundladen der Mathematik 22, 149–160 (1976)
Hernández, P., Cubillo, S., Torres-Blanc, C.: Negations on type-2 fuzzy sets. Fuzzy Sets Syst. 90 (2014)
Hernández, P.: Contribución al estudio de las negaciones, autocontradicciones, t-normas y t-conormas en los conjuntos borrosos de tipo-2. Tesis Doctoral, Junio (2014)
Jenei, S.: A more efficient method for defining fuzzy connectives. Fuzzy Sets Syst. 90, 25–35 (1997)
Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7(6), 643–658 (1999)
Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Upper Saddle River (1995)
Kohout, L.J., Bandler, W.: Fuzzy interval inference utilizing the checklist paradigm and BK-relational products. In: Kearfort, R.B.: et al. (eds.) Application of Interval Computations, pp 291–335, Kluwer, Dordrecht (1996)
Mendel, J.M., Robert, I., John, B.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)
Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)
Mendel, J.M.: Advances in type-2 fuzzy sets and systems. Inf. Sci. 177, 84–110 (2007)
Mendel, J.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, Upper Saddle River. Prentice-Hall (2001)
Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of type 2. Inf. Control 31, 312–340 (1976)
Miyamoto, S.: Multisets and fuzzy multisets. In: Liu, Z.-Q., Miyamoto, S. (eds.) Soft Computing and Human-Centered Machines, pp. 9–33. Springer, Berlin (2000)
Montero, J., Gómez, D., Bustince, H.: On the relevance of some families of fuzzy sets. Fuzzy Sets Syst. 158(2), 2429–2442 (2007)
Roy, M.K., Biswas, R.: I-v fuzzy relations and Sanchez’s approach for medical diagnosis. Fuzzy Sets Syst. 47, 35–38 (1992)
Sambuc, R.: Function \(\Phi \)-Flous, Application a l’aide au Diagnostic en Pathologie Thyroidienne. These de Doctorat en Medicine, Marseille (1975)
Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25, 529–539 (2010)
Trillas, E.: Sobre funciones de negación en la teoría de conjuntos difusos. Stochastica, III-1 (1979) 47–59, (in Spanish). Reprinted (English version) (1998) In: Barro, S. et al. (Eds.) Advances of Fuzzy Logic, pp 31–43, Tri-Universidad de Santiago de Compostela
Turksen, I.B.: Interval-valued fuzzy sets and compensatory AND. Fuzzy Sets Syst. 51, 295–307 (1992)
Yager, R.R.: On the theory of bags. Int. J. Gen. Syst. 13, 23–37 (1986)
Zadeh, L.A.: Outline of a new approach to analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 3, 28–44 (1973)
Zadeh, L.A.: Theory of approximate reasoning. In: Hayes, J.E., Michie, D., Mikulich, L.I. (eds.) Machine Intelligence, pp. 149–194, Ellis Horwood Ltd., Chichester (1970)
Acknowledgments
This paper has been partially supported by the National Science Foundation of Spain, Grants TIN2013-40765-P and TIN2012-32482.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Bustince, H., Barrenechea, E., Fernández, J., Pagola, M., Montero, J. (2015). Generation of Interval-Valued Fuzzy Negations from Trillas’ Theorem. The Case of Interval Type-2 Fuzzy Sets. In: Magdalena, L., Verdegay, J., Esteva, F. (eds) Enric Trillas: A Passion for Fuzzy Sets. Studies in Fuzziness and Soft Computing, vol 322. Springer, Cham. https://doi.org/10.1007/978-3-319-16235-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-16235-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16234-8
Online ISBN: 978-3-319-16235-5
eBook Packages: EngineeringEngineering (R0)