Skip to main content

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1061 Accesses

Abstract

In the context of homeostasis, cellular turnover in the airways of the lung is very low. Following injury, however, the lung can undergo dramatic regeneration and repair, which is imparted by region-specific stem/progenitor cells residing in distinct niches along the proximal-to-distal axis of the airway tree. Each niche has unique biologic characteristics, and controls the specification of lung stem/progenitor cells in proportion to the type and degree of injury. Evidence for the existence of physiologically and spatially distinct stem/progenitor cell populations in the mouse lung comes from in vivo lineage tracing experiments in genetically engineered mice, and from in vitro and ex vivo analyses in which phenotypic markers were used to isolate distinct stem/progenitor cell populations. Distinct, region-specific stem cell types in the mouse airway include basal-like cells in the ducts of submucosal glands (SMGs), basal cells in intercartilaginous regions of the proximal trachea and bronchi, variant club cells (formerly termed Clara cells) in the neuroendocrine bodies (NEBs) of bronchioles, bronchioalveolar stem cells (BASCs) at bronchioalveolar duct junctions (BADJs) in the respiratory bronchioles, and alveolar type II cells in the alveolar space. In this chapter, we review recent findings regarding the identification and isolation of region-specific stem/progenitor cells and properties of their niches in the lung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AEC I/II:

Alveolar epithelial cell I/II

AF:

Autofluorescence

ALDH1:

Aldehyde dehydrogenase 1 family

AQP3:

Aquaporin 3

BADJ:

Bronchioalveolar duct junction

BASC:

Bronchioalveolar stem cell

CCSP:

Club cell secretory protein

CD16:

Fc receptor, IgG, low affinity III

CD24:

CD24 molecule

CD31:

Platelet/Endothelial cell adhesion molecule 1 (aka PECAM1)

CD32:

Fc receptor, IgG, low affinity IIb

CD34:

CD34 antigen

CD45:

Protein tyrosine phosphatase, receptor type, C (aka Ptprc)

CD73:

5′ Nucleotidase, Ecto (aka Nt5e)

CD151:

CD151 antigen

CDH1:

Cadherin 1, type 1, E-cadherin (aka E-Cad)

CFTR:

Cystic fibrosis transmembrane conductance regulator

CGRP:

Calcitonin gene-related peptide

CK:

Cytokeratin

CSC:

Cancer stem cell

EpCAM:

Epithelial cell adhesion molecule

F3:

Tissue factor (aka TF)

FGF:

Fibroblast growth factor

GSI-A3B:

Griffonia simplicifolia isolectin A3B

H33342:

Hoechst 33342

ITGA6:

Integrin alpha 6 (aka CD49f)

ITGB4:

Integrin beta 4 (aka CD104)

LGR6:

Leucine-rich repeat containing g protein-coupled receptor 6

LRC:

Label retaining cell

Ly6a:

Lymphocyte antigen 6 complex, locus A (aka Sca-1)

Ly76:

Lymphocyte antigen 76 (aka TER119)

lrMSC:

Lung-resident mesenchymal stromal cell

MSC:

Mesenchymal stromal cell

NEB:

Neuroendocrine body

NGFR:

Nerve growth factor receptor

NSCLC:

Non-small cell lung cancer

PDGFRα:

Platelet-derived growth factor receptor alpha

PNEC:

Pulmonary neuroendocrine cell

SAE:

Surface airway epithelium

SCLC:

Small cell lung cancer

SMG:

Submucosal gland

SPC:

Surfactant protein C (aka Sftpc)

TGFβ:

Transforming growth factor beta

TROP2:

Tumor-associated calcium signal transducer 2 (aka Tacstd2)

TTF1:

Thyroid transcription factor 1 (aka NKx2.1)

References

  • Adamson IY, Bowden DH (1974) The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab Invest 30(1):35–42

    CAS  PubMed  Google Scholar 

  • Alamgeer M, Peacock CD, Matsui W, Ganju V, Watkins DN (2013) Cancer stem cells in lung cancer: evidence and controversies. Respirology 18(5):757–764. doi:10.1111/resp.12094

    Article  PubMed Central  PubMed  Google Scholar 

  • Avril-Delplanque A, Casal I, Castillon N, Hinnrasky J, Puchelle E, Peault B (2005) Aquaporin-3 expression in human fetal airway epithelial progenitor cells. Stem Cells 23(7):992–1001. doi:10.1634/stemcells.2004-0197

    Article  CAS  PubMed  Google Scholar 

  • Baker DG, McDonald DM, Basbaum CB, Mitchell RA (1986) The architecture of nerves and ganglia of the ferret trachea as revealed by acetylcholinesterase histochemistry. J Comp Neurol 246(4):513–526. doi:10.1002/cne.902460408

    Article  CAS  PubMed  Google Scholar 

  • Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, Randell SH, Noble PW, Hogan BL (2013) Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 123(7):3025–3036. doi:10.1172/JCI68782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boers JE, den Brok JL, Koudstaal J, Arends JW, Thunnissen FB (1996) Number and proliferation of neuroendocrine cells in normal human airway epithelium. Am J Respir Crit Care Med 154(3 Pt 1):758–763

    Article  CAS  PubMed  Google Scholar 

  • Boers JE, Ambergen AW, Thunnissen FB (1999) Number and proliferation of clara cells in normal human airway epithelium. Am J Respir Crit Care Med 159(5 Pt 1):1585–1591

    Article  CAS  PubMed  Google Scholar 

  • Borthwick DW, Shahbazian M, Krantz QT, Dorin JR, Randell SH (2001) Evidence for stem-cell niches in the tracheal epithelium. Am J Respir Cell Mol Biol 24(6):662–670

    Article  CAS  PubMed  Google Scholar 

  • Carraresi L, Martinelli R, Vannoni A, Riccio M, Dembic M, Tripodi S, Cintorino M, Santi S, Bigliardi E, Carmellini M, Rossini M (2006) Establishment and characterization of murine small cell lung carcinoma cell lines derived from HPV-16 E6/E7 transgenic mice. Cancer Lett 231(1):65–73. doi:http://dx.doi.org/10.1016/j.canlet.2005.01.027

  • Chapman HA, Li X, Alexander JP, Brumwell A, Lorizio W, Tan K, Sonnenberg A, Wei Y, Vu TH (2011) Integrin alpha6beta4 identifies an adult distal lung epithelial population with regenerative potential in mice. J Clin Invest 121(7):2855–2862. doi:10.1172/JCI57673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen H, Matsumoto K, Brockway BL, Rackley CR, Liang J, Lee JH, Jiang D, Noble PW, Randell SH, Kim CF, Stripp BR (2012) Airway epithelial progenitors are region specific and show differential responses to bleomycin-induced lung injury. Stem Cells 30(9):1948–1960. doi:10.1002/stem.1150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA, Ling TY, Yu SL, Yuan SS, Chen YJ, Lin CY, Pan SH, Chou HY, Chen YJ, Chang GC, Chu WC, Lee YM, Lee JY, Lee PJ, Li KC, Chen HW, Yang PC (2014) Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun 5:3472. doi:10.1038/ncomms4472

    PubMed  Google Scholar 

  • Cole BB, Smith RW, Jenkins KM, Graham BB, Reynolds PR, Reynolds SD (2010) Tracheal Basal cells: a facultative progenitor cell pool. Am J Pathol 177(1):362–376. doi:10.2353/ajpath.2010.090870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cutz E, Pan J, Yeger H, Domnik NJ, Fisher JT (2013) Recent advances and controversies on the role of pulmonary neuroepithelial bodies as airway sensors. Semin Cell Dev Biol 24(1):40–50. doi:10.1016/j.semcdb.2012.09.003

    Article  PubMed  Google Scholar 

  • Dajani R, Zhang Y, Taft PJ, Travis SM, Starner TD, Olsen A, Zabner J, Welsh MJ, Engelhardt JF (2005) Lysozyme secretion by submucosal glands protects the airway from bacterial infection. Am J Respir Cell Mol Biol 32(6):548–552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elftman AG (1943) The afferent and parasympathetic innervation of the lungs and trachea of the dog. Am J Anat 72:1–27

    Article  Google Scholar 

  • Engelhardt JF (2001) Stem cell niches in the mouse airway. Am J Respir Cell Mol Biol 24(6):649–652

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt JF, Schlossberg H, Yankaskas JR, Dudus L (1995) Progenitor cells of the adult human airway involved in submucosal gland development. Development 121(7):2031–2046

    CAS  PubMed  Google Scholar 

  • Evans MJ, Cabral LJ, Stephens RJ, Freeman G (1975) Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Exp Mol Pathol 22(1):142–150

    Article  CAS  PubMed  Google Scholar 

  • Evans MJ, Shami SG, Cabral-Anderson LJ, Dekker NP (1986) Role of nonciliated cells in renewal of the bronchial epithelium of rats exposed to NO2. Am J Pathol 123(1):126–133

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116(6):769–778

    Article  CAS  PubMed  Google Scholar 

  • Fujino N, Kubo H, Suzuki T, Ota C, Hegab AE, He M, Suzuki S, Suzuki T, Yamada M, Kondo T, Kato H, Yamaya M (2011) Isolation of alveolar epithelial type II progenitor cells from adult human lungs. Lab Invest 91(3):363–378. doi:10.1038/labinvest.2010.187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghosh M, Helm KM, Smith RW, Giordanengo MS, Li B, Shen H, Reynolds SD (2011) A single cell functions as a tissue-specific stem cell and the in vitro niche-forming cell. Am J Respir Cell Mol Biol 45(3):459–469. doi:10.1165/rcmb.2010-0314OC

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giangreco A, Reynolds SD, Stripp BR (2002) Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. Am J Pathol 161(1):173–182

    Article  PubMed Central  PubMed  Google Scholar 

  • Gong X, Sun Z, Cui D, Xu X, Zhu H, Wang L, Qian W, Han X (2014) Isolation and characterization of lung resident mesenchymal stem cells capable of differentiating into alveolar epithelial type II cells. Cell Biol Int 38(4):405–411. doi:10.1002/cbin.10240

    Article  CAS  PubMed  Google Scholar 

  • Guha A, Vasconcelos M, Cai Y, Yoneda M, Hinds A, Qian J, Li G, Dickel L, Johnson JE, Kimura S, Guo J, McMahon J, McMahon AP, Cardoso WV (2012) Neuroepithelial body microenvironment is a niche for a distinct subset of Clara-like precursors in the developing airways. Proc Natl Acad Sci U S A 109(31):12592–12597. doi:10.1073/pnas.1204710109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hackett TL, Shaheen F, Johnson A, Wadsworth S, Pechkovsky DV, Jacoby DB, Kicic A, Stick SM, Knight DA (2008) Characterization of side population cells from human airway epithelium. Stem Cells 26(10):2576–2585. doi:10.1634/stemcells.2008-0171

    Article  PubMed Central  PubMed  Google Scholar 

  • Hajj R, Baranek T, Le Naour R, Lesimple P, Puchelle E, Coraux C (2007) Basal cells of the human adult airway surface epithelium retain transit-amplifying cell properties. Stem Cells 25(1):139–148. doi:10.1634/stemcells.2006-0288

    Article  CAS  PubMed  Google Scholar 

  • Hansell MM, Moretti RL (1969) Ultrastructure of the mouse tracheal epithelium. J Morphol 128(2):159–169. doi:10.1002/jmor.1051280203

    Article  CAS  PubMed  Google Scholar 

  • Hegab AE, Ha VL, Gilbert JL, Zhang KX, Malkoski SP, Chon AT, Darmawan DO, Bisht B, Ooi AT, Pellegrini M, Nickerson DW, Gomperts BN (2011) Novel stem/progenitor cell population from murine tracheal submucosal gland ducts with multipotent regenerative potential. Stem Cells 29(8):1283–1293. doi:10.1002/stem.680

    Article  PubMed Central  PubMed  Google Scholar 

  • Hegab AE, Ha VL, Darmawan DO, Gilbert JL, Ooi AT, Attiga YS, Bisht B, Nickerson DW, Gomperts BN (2012a) Isolation and in vitro characterization of basal and submucosal gland duct stem/progenitor cells from human proximal airways. Stem Cells Transl Med 1(10):719–724. doi:10.5966/sctm.2012-0056sctm.2012-0056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hegab AE, Nickerson DW, Ha VL, Darmawan DO, Gomperts BN (2012b) Repair and regeneration of tracheal surface epithelium and submucosal glands in a mouse model of hypoxic-ischemic injury. Respirology 17(7):1101–1113. doi:10.1111/j.1440-1843.2012.02204.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Hegab AE, Ha VL, Bisht B, Darmawan DO, Ooi AT, Zhang KX, Paul MK, Kim YS, Gilbert JL, Attiga YS, Alva-Ornelas JA, Nickerson DW, Gomperts BN (2014) Aldehyde dehydrogenase activity enriches for proximal airway basal stem cells and promotes their proliferation. Stem Cells Dev 23(6):664–675. doi:10.1089/scd.2013.0295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR (2001) Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 24(6):671–681

    Article  CAS  PubMed  Google Scholar 

  • Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR (2004a) Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am J Pathol 164(2):577–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR (2004b) In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. Am J Physiol Lung Cell Mol Physiol 286(4):L643–L649

    Article  CAS  PubMed  Google Scholar 

  • Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, Cho J, Suh J, Capelletti M, Sivachenko A, Sougnez C, Auclair D, Lawrence MS, Stojanov P, Cibulskis K, Choi K, de Waal L, Sharifnia T, Brooks A, Greulich H, Banerji S, Zander T, Seidel D, Leenders F, Ansen S, Ludwig C, Engel-Riedel W, Stoelben E, Wolf J, Goparju C, Thompson K, Winckler W, Kwiatkowski D, Johnson BE, Janne PA, Miller VA, Pao W, Travis WD, Pass HI, Gabriel SB, Lander ES, Thomas RK, Garraway LA, Getz G, Meyerson M (2012) Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150(6):1107–1120. doi:10.1016/j.cell.2012.08.029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jeffery PK (1983) Morphologic features of airway surface epithelial cells and glands. Am Rev Respir Dis 128(2 Pt 2):S14–S20

    CAS  PubMed  Google Scholar 

  • Kelley MJ, Snider RH, Becker KL, Johnson BE (1994) Small cell lung carcinoma cell lines express mRNA for calcitonin and alpha- and beta-calcitonin gene related peptides. Cancer Lett 81(1):19–25. doi:10.1016/0304-3835(94)90159-7

    Article  CAS  PubMed  Google Scholar 

  • Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121(6):823–835

    Article  CAS  PubMed  Google Scholar 

  • Kinnard WV, Tuder R, Papst P, Fisher JH (1994) Regulation of alveolar type II cell differentiation and proliferation in adult rat lung explants. Am J Respir Cell Mol Biol 11(4):416–425

    Article  CAS  PubMed  Google Scholar 

  • Kitamura H, Okudela K, Yazawa T, Sato H, Shimoyamada H (2009) Cancer stem cell: implications in cancer biology and therapy with special reference to lung cancer. Lung Cancer 66(3):275–281. doi:10.1016/j.lungcan.2009.07.019

    Article  PubMed  Google Scholar 

  • Lama VN, Smith L, Badri L, Flint A, Andrei AC, Murray S, Wang Z, Liao H, Toews GB, Krebsbach PH, Peters-Golden M, Pinsky DJ, Martinez FJ, Thannickal VJ (2007) Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest 117(4):989–996. doi:10.1172/JCI29713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lauweryns JM, Cokelaere M, Theunynck P (1972) Neuroepithelial bodies in the respiratory mucosa of various mammals. A light optical, histochemical and ultrastuctural investigation. Z Zellforsch Mikrosk Anat 135:569–592

    Article  CAS  PubMed  Google Scholar 

  • Lauweryns JM, Cokelaere M, Theunynck P, Deleersnyder M (1974) Neuroepithelial bodies in mammalian respiratory mucosa: light optical, histochemical an ultrastructural studies. Chest 65(Suppl):22S–29S

    Article  PubMed  Google Scholar 

  • Leeman KT, Fillmore CM, Kim CF (2014) Lung stem and progenitor cells in tissue homeostasis and disease. Curr Top Dev Biol 107:207–233. doi:10.1016/B978-0-12-416022-4.00008-1

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, Engelhardt JF (2008) The glandular stem/progenitor cell niche in airway development and repair. Proc Am Thorac Soc 5(6):682–688. doi:10.1513/pats.200801-003AW

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu X, Driskell RR, Engelhardt JF (2006) Stem cells in the lung. Methods Enzymol 419:285–321

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lundin A, Driscoll B (2013) Lung cancer stem cells: progress and prospects. Cancer Lett 338(1):89–93. doi:10.1016/j.canlet.2012.08.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lynch TJ, Engelhardt JF (2014) Progenitor cells in proximal airway epithelial development and regeneration. J Cell Biochem 115(10):1637–45. doi:10.1002/jcb.24834

    Article  CAS  PubMed  Google Scholar 

  • Martin J, Helm K, Ruegg P, Varella-Garcia M, Burnham E, Majka S (2008) Adult lung side population cells have mesenchymal stem cell potential. Cytotherapy 10(2):140–151. doi:10.1080/14653240801895296

    Article  CAS  PubMed  Google Scholar 

  • McDonald DM (1988) Neurogenic inflammation in the rat trachea. I. Changes in venules, leucocytes and epithelial cells. J Neurocytol 17(5):583–603

    Article  CAS  PubMed  Google Scholar 

  • McQualter JL, Bertoncello I (2012) Concise review: Deconstructing the lung to reveal its regenerative potential. Stem Cells 30(5):811–816. doi:10.1002/stem.1055

    Article  CAS  PubMed  Google Scholar 

  • McQualter JL, Brouard N, Williams B, Baird BN, Sims-Lucas S, Yuen K, Nilsson SK, Simmons PJ, Bertoncello I (2009) Endogenous fibroblastic progenitor cells in the adult mouse lung are highly enriched in the sca-1 positive cell fraction. Stem Cells 27(3):623–633. doi:10.1634/stemcells.2008-0866

    Article  CAS  PubMed  Google Scholar 

  • McQualter JL, Yuen K, Williams B, Bertoncello I (2010) Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci U S A 107(4):1414–1419. doi:10.1073/pnas.0909207107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McQualter JL, McCarty RC, Van der Velden J, O'Donoghue RJ, Asselin-Labat ML, Bozinovski S, Bertoncello I (2013) TGF-beta signaling in stromal cells acts upstream of FGF-10 to regulate epithelial stem cell growth in the adult lung. Stem Cell Res 11(3):1222–1233. doi:10.1016/j.scr.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  • Mercer RR, Russell ML, Roggli VL, Crapo JD (1994) Cell number and distribution in human and rat airways. Am J Respir Cell Mol Biol 10(6):613–624. doi:10.1165/ajrcmb.10.6.8003339

    Article  CAS  PubMed  Google Scholar 

  • Morrisey EE, Hogan BL (2010) Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 18(1):8–23. doi:10.1016/j.devcel.2009.12.010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nadel JA (1983) Neural control of airway submucosal gland secretion. Eur J Respir Dis Suppl 128(Pt 1):322–326

    PubMed  Google Scholar 

  • Oeztuerk-Winder F, Guinot A, Ochalek A, Ventura JJ (2012) Regulation of human lung alveolar multipotent cells by a novel p38alpha MAPK/miR-17-92 axis. EMBO J 31(16):3431–3441. doi:10.1038/emboj.2012.192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pack RJ, Al-Ugaily LH, Morris G, Widdicombe JG (1980) The distribution and structure of cells in the tracheal epithelium of the mouse. Cell Tissue Res 208(1):65–84

    Article  CAS  PubMed  Google Scholar 

  • Pardo-Saganta A, Law BM, Gonzalez-Celeiro M, Vinarsky V, Rajagopal J (2013) Ciliated cells of pseudostratified airway epithelium do not become mucous cells after ovalbumin challenge. Am J Respir Cell Mol Biol 48(3):364–373. doi:10.1165/rcmb.2012-0146OC

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peake JL, Reynolds SD, Stripp BR, Stephens KE, Pinkerton KE (2000) Alteration of pulmonary neuroendocrine cells during epithelial repair of naphthalene-induced airway injury. Am J Pathol 156(1):279–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plopper CG, Hill LH, Mariassy AT (1980) Ultrastructure of the nonciliated bronchiolar epithelial (Clara) cell of mammalian lung. III. A study of man with comparison of 15 mammalian species. Exp Lung Res 1(2):171–180

    Article  CAS  PubMed  Google Scholar 

  • Rawlins EL, Hogan BL (2008) Ciliated epithelial cell lifespan in the mouse trachea and lung. Am J Physiol Lung Cell Mol Physiol 295(1):L231–L234. doi:10.1152/ajplung.90209.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rawlins EL, Clark CP, Xue Y, Hogan BL (2009a) The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development 136(22):3741–3745. doi:10.1242/dev.037317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rawlins EL, Okubo T, Xue Y, Brass DM, Auten RL, Hasegawa H, Wang F, Hogan BL (2009b) The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell 4(6):525–534. doi:10.1016/j.stem.2009.04.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reddy R, Buckley S, Doerken M, Barsky L, Weinberg K, Anderson KD, Warburton D, Driscoll B (2004) Isolation of a putative progenitor subpopulation of alveolar epithelial type 2 cells. Am J Physiol Lung Cell Mol Physiol 286(4):L658–L667

    Article  CAS  PubMed  Google Scholar 

  • Regala RP, Davis RK, Kunz A, Khoor A, Leitges M, Fields AP (2009) Atypical protein kinase Ci is required for bronchioalveolar stem cell expansion and lung tumorigenesis. Cancer Res 69(19):7603–7611. doi:10.1158/0008-5472.CAN-09-2066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reynolds SD, Malkinson AM (2010) Clara cell: progenitor for the bronchiolar epithelium. Int J Biochem Cell Biol 42(1):1–4. doi:10.1016/j.biocel.2009.09.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reynolds SD, Giangreco A, Power JH, Stripp BR (2000a) Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol 156(1):269–278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reynolds SD, Hong KU, Giangreco A, Mango GW, Guron C, Morimoto Y, Stripp BR (2000b) Conditional clara cell ablation reveals a self-renewing progenitor function of pulmonary neuroendocrine cells. Am J Physiol Lung Cell Mol Physiol 278(6):L1256–L1263

    CAS  PubMed  Google Scholar 

  • Ricciardi M, Malpeli G, Bifari F, Bassi G, Pacelli L, Nwabo Kamdje AH, Chilosi M, Krampera M (2012) Comparison of epithelial differentiation and immune regulatory properties of mesenchymal stromal cells derived from human lung and bone marrow. PLoS One 7(5):e35639. doi:10.1371/journal.pone.0035639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rock JR, Hogan BL (2011) Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol 27:493–512. doi:10.1146/annurev-cellbio-100109-104040

    Article  CAS  PubMed  Google Scholar 

  • Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH, Hogan BL (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A 106(31):12771–12775. doi:10.1073/pnas.0906850106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rock JR, Randell SH, Hogan BL (2010) Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech 3(9–10):545–556. doi:10.1242/dmm.006031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR, Liang J, Noble PW, Hogan BL (2011) Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci U S A 108(52):E1475–E1483. doi:10.1073/pnas.1117988108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sabatini F, Petecchia L, Tavian M, Jodon de Villeroche V, Rossi GA, Brouty-Boye D (2005) Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab Invest 85(8):962–971

    Article  CAS  PubMed  Google Scholar 

  • Schoch KG, Lori A, Burns KA, Eldred T, Olsen JC, Randell SH (2004) A subset of mouse tracheal epithelial basal cells generates large colonies in vitro. Am J Physiol Lung Cell Mol Physiol 286(4):L631–L642

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Takahashi Y, Kawaguchi S, Sakakura Y (1996) Hypertrophic and metaplastic changes of goblet cells in rat nasal epithelium induced by endotoxin. Am J Respir Crit Care Med 153(4 Pt 1):1412–1418. doi:10.1164/ajrccm.153.4.8616574

    Article  CAS  PubMed  Google Scholar 

  • Sinclair K, Yerkovich ST, Chambers DC (2013) Mesenchymal stem cells and the lung. Respirology 18(3):397–411. doi:10.1111/resp.12050

    Article  PubMed  Google Scholar 

  • Song H, Yao E, Lin C, Gacayan R, Chen MH, Chuang PT (2012) Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis. Proc Natl Acad Sci U S A 109(43):17531–17536. doi:10.1073/pnas.1207238109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Succony L, Janes SM (2014) Airway stem cells and lung cancer. QJM 107(8):607–12. doi:10.1093/qjmed/hcu040

    Article  CAS  PubMed  Google Scholar 

  • Sutherland KD, Proost N, Brouns I, Adriaensen D, Song JY, Berns A (2011) Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell 19(6):754–764. doi:10.1016/j.ccr.2011.04.019

    Article  CAS  PubMed  Google Scholar 

  • Takebe N, Ivy SP (2010) Controversies in cancer stem cells: targeting embryonic signaling pathways. Clin Cancer Res 16(12):3106–3112. doi:10.1158/1078-0432.CCR-09-2934

    Article  CAS  PubMed  Google Scholar 

  • Tamai S (1983) Basal cells of the human bronchiole. Acta Pathol Jpn 33(1):123–140

    CAS  PubMed  Google Scholar 

  • Tata PR, Mou H, Pardo-Saganta A, Zhao R, Prabhu M, Law BM, Vinarsky V, Cho JL, Breton S, Sahay A, Medoff BD, Rajagopal J (2013) Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 503(7475):218–223. doi:10.1038/nature12777

    PubMed Central  CAS  PubMed  Google Scholar 

  • Teisanu RM, Lagasse E, Whitesides JF, Stripp BR (2009) Prospective isolation of bronchiolar stem cells based upon immunophenotypic and autofluorescence characteristics. Stem Cells 27(3):612–622. doi:10.1634/stemcells.2008-0838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teisanu RM, Chen H, Matsumoto K, McQualter JL, Potts E, Foster WM, Bertoncello I, Stripp BR (2011) Functional analysis of two distinct bronchiolar progenitors during lung injury and repair. Am J Respir Cell Mol Biol 44(6):794–803. doi:10.1165/rcmb.2010-0098OC

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Travis WD, Brambilla E, Riely GJ (2013) New pathologic classification of lung cancer: relevance for clinical practice and clinical trials. J Clin Oncol 31(8):992–1001. doi:10.1200/JCO.2012.46.9270

    Article  CAS  PubMed  Google Scholar 

  • Tropea KA, Leder E, Aslam M, Lau AN, Raiser DM, Lee JH, Balasubramaniam V, Fredenburgh LE, Alex Mitsialis S, Kourembanas S, Kim CF (2012) Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 302(9):L829–L837. doi:10.1152/ajplung.00347.2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van der Velden JL, Bertoncello I, McQualter JL (2013) LysoTracker is a marker of differentiated alveolar type II cells. Respir Res 14:123. doi:10.1186/1465-9921-14-123

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Van Lommel A, Bolle T, Fannes W, Lauweryns JM (1999) The pulmonary neuroendocrine system: the past decade. Arch Histol Cytol 62(1):1–16

    Article  PubMed  Google Scholar 

  • Volckaert T, Dill E, Campbell A, Tiozzo C, Majka S, Bellusci S, De Langhe SP (2011) Parabronchial smooth muscle constitutes an airway epithelial stem cell niche in the mouse lung after injury. J Clin Invest 121(11):4409–4419. doi:10.1172/JCI58097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Volckaert T, Campbell A, De Langhe S (2013) c-Myc regulates proliferation and Fgf10 expression in airway smooth muscle after airway epithelial injury in mouse. PLoS One 8(8):e71426. doi:10.1371/journal.pone.0071426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Zhang Y, Amberson A, Engelhardt JF (2001) New models of the tracheal airway define the glandular contribution to airway surface fluid and electrolyte composition. Am J Respir Cell Mol Biol 24(2):195–202

    Article  CAS  PubMed  Google Scholar 

  • Widdicombe JH, Chen LL, Sporer H, Choi HK, Pecson IS, Bastacky SJ (2001) Distribution of tracheal and laryngeal mucous glands in some rodents and the rabbit. J Anat 198(Pt 2):207–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilkerson MD, Yin X, Hoadley KA, Liu Y, Hayward MC, Cabanski CR, Muldrew K, Miller CR, Randell SH, Socinski MA, Parsons AM, Funkhouser WK, Lee CB, Roberts PJ, Thorne L, Bernard PS, Perou CM, Hayes DN (2010) Lung squamous cell carcinoma mRNA expression subtypes are reproducible, clinically important, and correspond to normal cell types. Clin Cancer Res 16(19):4864–4875. doi:10.1158/1078-0432.CCR-10-0199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wine JJ (2007) Parasympathetic control of airway submucosal glands: central reflexes and the airway intrinsic nervous system. Auton Neurosci 133(1):35–54. doi:10.1016/j.autneu.2007.01.008

    Article  PubMed Central  PubMed  Google Scholar 

  • Wine JJ, Joo NS (2004) Submucosal glands and airway defense. Proc Am Thorac Soc 1(1):47–53. doi:10.1513/pats.2306015

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Fisher JT, Lynch TJ, Luo M, Evans TI, Neff TL, Zhou W, Zhang Y, Ou Y, Bunnett NW, Russo AF, Goodheart MJ, Parekh KR, Liu X, Engelhardt JF (2011) CGRP induction in cystic fibrosis airways alters the submucosal gland progenitor cell niche in mice. J Clin Invest 121(8):3144–3158. doi:10.1172/JCI41857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xing Y, Li A, Borok Z, Li C, Minoo P (2012) NOTCH1 is required for regeneration of Clara cells during repair of airway injury. Stem Cells 30(5):946–955. doi:10.1002/stem.1059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu X, Rock JR, Lu Y, Futtner C, Schwab B, Guinney J, Hogan BL, Onaitis MW (2012) Evidence for type II cells as cells of origin of K-Ras-induced distal lung adenocarcinoma. Proc Natl Acad Sci U S A 109(13):4910–4915. doi:10.1073/pnas.1112499109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zacharek SJ, Fillmore CM, Lau AN, Gludish DW, Chou A, Ho JW, Zamponi R, Gazit R, Bock C, Jager N, Smith ZD, Kim TM, Saunders AH, Wong J, Lee JH, Roach RR, Rossi DJ, Meissner A, Gimelbrant AA, Park PJ, Kim CF (2011) Lung stem cell self-renewal relies on BMI1-dependent control of expression at imprinted loci. Cell Stem Cell 9(3):272–281. doi:10.1016/j.stem.2011.07.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng D, Limmon GV, Yin L, Leung NH, Yu H, Chow VT, Chen J (2013) A cellular pathway involved in Clara cell to alveolar type II cell differentiation after severe lung injury. PLoS One 8(8):e71028. doi:10.1371/journal.pone.0071028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the NIH (DK047967) and the University of Iowa Center for Gene Therapy (DK054759).

Conflict of Interest Statement: None of the authors has a financial relationship with a commercial entity that has an interest in the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Engelhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lynch, T.J., Liu, X., Wei, J., Engelhardt, J.F. (2015). Stem Cell Niches in the Lung. In: Firth, A., Yuan, JJ. (eds) Lung Stem Cells in the Epithelium and Vasculature. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-16232-4_3

Download citation

Publish with us

Policies and ethics