From Smart Health to Smart Hospitals

  • Andreas Holzinger
  • Carsten Röcker
  • Martina Ziefle
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8700)

Abstract

Prolonged life expectancy along with the increasing complexity of medicine and health services raises health costs worldwide dramatically. Advancements in ubiquitous computing applications in combination with the use of sophisticated intelligent sensor networks may provide a basis for help. Whilst the smart health concept has much potential to support the concept of the emerging P4-medicine (preventive, participatory, predictive, and personalized), such high-tech medicine produces large amounts of high-dimensional, weakly-structured data sets and massive amounts of unstructured information. All these technological approaches along with “big data” are turning the medical sciences into a data-intensive science. To keep pace with the growing amounts of complex data, smart hospital approaches are a commandment of the future, necessitating context aware computing along with advanced interaction paradigms in new physical-digital ecosystems. In such a system the medical doctors are supported by their smart mobile medical assistants on managing their floods of data semi-automatically by following the human-in-the-loop concept. At the same time patients are supported by their health assistants to facilitate a healthier life, wellness and wellbeing.

Keywords

Smart health Smart hospital Ubiquitous computing Pervasive health P4 medicine Context awareness Computational intelligence 

References

  1. 1.
    Oeppen, J., Vaupel, J.W.: Demography - broken limits to life expectancy. Science 296(5570), 1029 (2002)Google Scholar
  2. 2.
    Mathers, C.D., Stevens, G.A., Boerma, T., White, R.A., Tobias, M.I.: Causes of international increases in older age life expectancy. Lancet 385(9967), 540–548 (2015)Google Scholar
  3. 3.
    Röcker, C., Ziefle, M., Holzinger, A.: From computer innovation to human integration: current trends and challenges for pervasive HealthTechnologies. In: Holzinger, A., Ziefle, M., Röcker, C. (eds.) Pervasive Health, pp. 1–17. Springer, London (2014)Google Scholar
  4. 4.
    Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge discovery and interactive data mining in bioinformatics - state-of-the-art, future challenges and research directions. BMC Bioinform. 15(Suppl 6), I1 (2014)Google Scholar
  5. 5.
    Holzinger, A., Stocker, C., Ofner, B., Prohaska, G., Brabenetz, A., Hofmann-Wellenhof, R.: Combining HCI, natural language processing, and knowledge discovery - potential of IBM content analytics as an assistive technology in the biomedical field. In: Holzinger, A., Pasi, G. (eds.) HCI-KDD 2013. LNCS, vol. 7947, pp. 13–24. Springer, Heidelberg (2013)Google Scholar
  6. 6.
    Holzinger, A.: On knowledge discovery and interactive intelligent visualization of biomedical data - challenges in human–computer interaction and biomedical informatics. In: DATA 2012, pp. 9–20 (2012)Google Scholar
  7. 7.
    Holzinger, A.: Weakly structured data in health-informatics: the challenge for human-computer interaction. In: Proceedings of INTERACT 2011 Workshop: Promoting and Supporting Healthy Living by Design, pp. 5–7. IFIP (2011)Google Scholar
  8. 8.
    Duerr-Specht, M., Goebel, R., Holzinger, A.: Medicine and health care as a data problem: will computers become better medical doctors? In: Holzinger, A., Roecker, C., Ziefle, M. (eds.) Smart Health. LNCS, vol. 8700, pp. 21-39. Springer, Heidelberg (2015)Google Scholar
  9. 9.
    Culler, D.E., Mulder, H.: Smart sensors to network the world. Sci. Am. 290(6), 84–91 (2004)Google Scholar
  10. 10.
    Ghrist, R., de Silva, V.: Homological sensor networks. Notic. Amer. Math. Soc. 54(1), 10–17 (2007)MATHGoogle Scholar
  11. 11.
    Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. (CSUR) 45(1), 12 (2012)Google Scholar
  12. 12.
    Holzinger, A., Schwarz, M., Ofner, B., Jeanquartier, F., Calero-Valdez, A., Roecker, C., Ziefle, M.: Towards interactive visualization of longitudinal data to support knowledge discovery on multi-touch tablet computers. In: Teufel, S., Min, T.A., You, I., Weippl, E. (eds.) CD-ARES 2014. LNCS, vol. 8708, pp. 124–137. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Weiser, M.: Some computer science issues in ubiquitous computing. Commun. ACM 36(7), 75–84 (1993)Google Scholar
  14. 14.
    Weiser, M., Gold, R., Brown, J.S.: The origins of ubiquitous computing research at PARC in the late 1980s. IBM Syst. J. 38, 693–696 (1999)Google Scholar
  15. 15.
    Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)Google Scholar
  16. 16.
    Wu, F.J., Kao, Y.F., Tseng, Y.C.: From wireless sensor networks towards cyber physical systems. Pervasive Mob. Comput. 7(4), 397–413 (2011)Google Scholar
  17. 17.
    Schirner, G., Erdogmus, D., Chowdhury, K., Padir, T.: The future of human-in-the-loop cyber-physical systems. Computer 46(1), 36–45 (2013)Google Scholar
  18. 18.
    Holzinger, A.: Human-computer interaction and knowledge discovery (HCI-KDD): what is the benefit of bringing those two fields to work together? In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 319–328. Springer, Heidelberg (2013)Google Scholar
  19. 19.
    Holzinger, A.: Trends in interactive knowledge discovery for personalized medicine: cognitive science meets machine learning. Intell. Inform. Bull. 15(1), 6–14 (2014)Google Scholar
  20. 20.
    Milenkovic, A., Otto, C., Jovanov, E.: Wireless sensor networks for personal health monitoring: issues and an implementation. Comput. Commun. 29(13–14), 2521–2533 (2006)Google Scholar
  21. 21.
    Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13(3), 319–339 (1989)Google Scholar
  22. 22.
    Aarts, E., Harwig, E., Schuurmans, M.: Ambient intelligence. In: Denning, J. (ed.) The Invisible Future, pp. 235–250. McGraw-Hill, New York (2001)Google Scholar
  23. 23.
    Satyanarayanan, M.: Pervasive computing: vision and challenges. IEEE Pers. Commun. 8(4), 10–17 (2001)Google Scholar
  24. 24.
    Ramos, C., Augusto, J.C., Shapiro, D.: Ambient intelligence - the next step for artificial intelligence. IEEE Intell. Syst. 23(2), 15–18 (2008)Google Scholar
  25. 25.
    Abowd, G.D., Dey, A.K.: Towards a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999)Google Scholar
  26. 26.
    Gellersen, H.W., Schmidt, A., Beigl, M.: Multi-sensor context-awareness in mobile devices and smart artifacts. Mob. Netw. Appl. 7(5), 341–351 (2002)MATHGoogle Scholar
  27. 27.
    Bardram, J.E., Hansen, T.R., Mogensen, M., Soegaard, M.: Experiences from real-world deployment of context-aware technologies in a hospital environment. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 369–386. Springer, Heidelberg (2006)Google Scholar
  28. 28.
    Yan, H.R., Huo, H.W., Xu, Y.Z., Gidlund, M.: Wireless sensor network based e-health system - implementation and experimental results. IEEE Trans. Consum. Electron. 56(4), 2288–2295 (2010)Google Scholar
  29. 29.
    Demiris, G., Rantz, M.J., Aud, M.A., Marek, K.D., Tyrer, H.W., Skubic, M., Hussam, A.A.: Older adults’ attitudes towards and perceptions of ‘smart home’ technologies: a pilot study. Med. Inform. Internet Med. 29(2), 87–94 (2004)Google Scholar
  30. 30.
    Demiris, G., Tan, J.: Rejuvenating home health care and tele-home care. In: Tan, J. (ed.) E-Health Care Information Systems: An Introduction for Students and Professionals, pp. 267–290. Jossey-Bass, San Francisco (2005)Google Scholar
  31. 31.
    Hood, L., Friend, S.H.: Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat. Rev. Clin. Oncol. 8(3), 184–187 (2011)Google Scholar
  32. 32.
    Weippl, E., Holzinger, A., Tjoa, A.M.: Security aspects of ubiquitous computing in health care. Springer Elektrotechnik und Informationstechnik, e & i 123(4), 156–162 (2006)Google Scholar
  33. 33.
    Holzinger, A., Nischelwitzer, A., Friedl, S., Hu, B.: Towards life long learning: three models for ubiquitous applications. Wirel. Commun. Mob. Comput. 10(10), 1350–1365 (2010)Google Scholar
  34. 34.
    Kieseberg, P., Hobel, H., Schrittwieser, S., Weippl, E., Holzinger, A.: Protecting anonymity in data-driven biomedical science. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 301–316. Springer, Heidelberg (2014)Google Scholar
  35. 35.
    Minsky, M.: Steps towards artificial intelligence. Proc. Inst. Radio Eng. 49(1), 8–30 (1961)MathSciNetGoogle Scholar
  36. 36.
    Suryadevara, N.K., Mukhopadhyay, S.C.: Determining wellness through an ambient assisted living environment. IEEE Intell. Syst. 29(3), 30–37 (2014)Google Scholar
  37. 37.
    Sanchez, D., Tentori, M., Favela, J.: Activity recognition for the smart hospital. IEEE Intell. Syst. 23(2), 50–57 (2008)Google Scholar
  38. 38.
    Solanas, A., Patsakis, C., Conti, M., Vlachos, I.S., Ramos, V., Falcone, F., Postolache, O., Perez-Martinez, P.A., Di Pietro, R., Perrea, D.N., Martinez-Balleste, A.: Smart health: a context-aware health paradigm within smart cities. IEEE Commun. Mag. 52(8), 74–81 (2014)Google Scholar
  39. 39.
    Weiser, M.: The computer for the twenty-first century. Sci. Am. 265(3), 94–104 (1991)Google Scholar
  40. 40.
    Streitz, N., Magerkurth, C., Prante, T., Röcker, C.: From information design to experience design: smart artefacts and the disappearing computer. Interactions 12(4), 21–25 (2005)Google Scholar
  41. 41.
    Cowan, D., Turner-Smith, A.: The role of assistive technology in alternative models of care for older people. In: Sutherland, I. (ed.) With Respect To Old Age: The Royal Commission for the Long Term Care of the Elderly, Appendix 4, vol. 2, pp. 325–346. The Stationery Office, London (1999)Google Scholar
  42. 42.
    Holzinger, A., Dorner, S., Födinger, M., Valdez, A.C., Ziefle, M.: Chances of increasing youth health awareness through mobile wellness applications. In: Leitner, G., Hitz, M., Holzinger, A. (eds.) USAB 2010. LNCS, vol. 6389, pp. 71–81. Springer, Heidelberg (2010)Google Scholar
  43. 43.
    Röcker, C., Wilkowska, W., Ziefle, M., Kasugai, K., Klack, L., Möllering, C., Beul, S.: Towards adaptive interfaces for supporting elderly users in technology-enhanced home environments. In: Proceedings of the 18th Biennial Conference of the International Communications Society (2010)Google Scholar
  44. 44.
    Kleinberger, T., Becker, M., Ras, E., Holzinger, A., Müller, P.: Ambient intelligence in assisted living: enable elderly people to handle future interfaces. In: Stephanidis, C. (ed.) UAHCI 2007 (Part II). LNCS, vol. 4555, pp. 103–112. Springer, Heidelberg (2007)Google Scholar
  45. 45.
    Kern, N., Schiele, B., Schmidt, A.: Multi-sensor activity context detection for wearable computing. In: Aarts, E., Collier, R.W., van Loenen, E., de Ruyter, B. (eds.) EUSAI 2003. LNCS, vol. 2875, pp. 220–232. Springer, Heidelberg (2003)Google Scholar
  46. 46.
    Holzinger, A., Searle, G., Prückner, S., Steinbach-Nordmann, S., Kleinberger, T., Hirt, E., Temnitzer, J.: Perceived usefulness among elderly people: experiences and lessons learned during the evaluation of a wrist device. In: International Conference on Pervasive Computing Technologies for Healthcare (Pervasive Health 2010), pp. 1–5. IEEE (2010)Google Scholar
  47. 47.
    Muensterer, O.J., Lacher, M., Zoeller, C., Bronstein, M., Kubler, J.: Google glass in pediatric surgery: an exploratory study. Int. J. Surg. 12(4), 281–289 (2014)Google Scholar
  48. 48.
    Holzinger, A.: Finger instead of mouse: touch screens as a means of enhancing universal access. In: Carbonell, N., Stephanidis, C. (eds.) UI4ALL 2002. LNCS, vol. 2615, pp. 387–397. Springer, Heidelberg (2003)Google Scholar
  49. 49.
    Overstall, P.W., Nikolaus, T.: Gait, balance, and falls. In: Pathy, M.S.J., Sinclair, A.J., Morley, J.E. (eds.) Principles and Practice of Geriatric Medicine, vol. 2, 4th edn, pp. 1299–1309. Wiley, Chichester (2006)Google Scholar
  50. 50.
    Ruyter, B.D., Pelgrim, E.: Ambient assisted-living research in carelab. Interactions 14(4), 30–33 (2007)Google Scholar
  51. 51.
    Noury, N., Fleury, A., Rumeau, P., Bourke, A., Laighin, G., Rialle, V., Lundy, J.: Fall detection-principles and methods. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, EMBS 2007, pp. 1663–1666. IEEE (2007)Google Scholar
  52. 52.
    Addlesee, M.D., Jones, A., Livesey, F., Samaria, F.: The ORL active floor. IEEE Pers. Commun. 4, 35–41 (1997)Google Scholar
  53. 53.
    Orr, R.J., Abowd, G.D.: The smart floor: a mechanism for natural user identification and tracking. In: CHI 2000 Extended Abstracts on Human Factors in Computing Systems, pp. 275–276. ACM (2000)Google Scholar
  54. 54.
    Leusmann, P., Mollering, C., Klack, L., Kasugai, K., Ziefle, M., Rumpe, B.: Your floor knows where you are: sensing and acquisition of movement data. In: 2011 12th IEEE International Conference on Mobile Data Management (MDM), pp. 61–66. IEEE (2011)Google Scholar
  55. 55.
    Ziefle, M., Röcker, C., Wilkowska, W., Kasugai, K., Klack, L., Möllering, C., Beul, S.: A multi-disciplinary approach to ambient assisted living. In: Röcker, C., Ziefle, M. (eds.) E-Health, Assistive Technologies and Applications for Assisted Living: Challenges and Solutions. IGI Global, Hershey (2010)Google Scholar
  56. 56.
    Klack, L., Möllering, C., Ziefle, M., Schmitz-Rode, T.: Future care floor: a sensitive floor for movement monitoring and fall detection in home environments. In: Lin, J. (ed.) MobiHealth 2010. LNICST, vol. 55, pp. 211–218. Springer, Heidelberg (2011)Google Scholar
  57. 57.
    Baker, A.M., Lafata, J.E., Ward, R.E., Whitehouse, F., Divine, G.: A web-based diabetes care management support system. Jt. Comm. J. Qual. Patient Saf. 27(4), 179–190 (2001)Google Scholar
  58. 58.
    Donsa, K., Spat, S., Beck, P., Pieber, T.R., Holzinger, A.: Towards personalization of diabetes therapy using computerized decision support and machine learning: some open problems and challenges. In: Holzinger, A., Roecker, C., Ziefle, M. (eds.) Smart Health. Lecture Notes in Computer Science LNCS, vol. 8700, pp. 235–260. Springer, Heidelberg, Berlin (2015)Google Scholar
  59. 59.
    Morlion, B., Knoop, C., Paiva, M., Estenne, M.: Internet-based home monitoring of pulmonary function after lung transplantation. Am. J. Respir. Crit. Care Med. 165(5), 694–697 (2002)Google Scholar
  60. 60.
    Ávila-Funes, J.A., Amieva, H., Barberger-Gateau, P., Le Goff, M., Raoux, N., Ritchie, K., Carriere, I., Tavernier, B., Tzourio, C., Gutiérrez-Robledo, L.M.: Cognitive impairment improves the predictive validity of the phenotype of frailty for adverse health outcomes: the three-city study. J. Am. Geriatr. Soc. 57(3), 453–461 (2009)Google Scholar
  61. 61.
    Park, S.H., Won, S.H., Lee, J.B., Kim, S.W.: Smart home–digitally engineered domestic life. Pers. Ubiquit. Comput. 7(3–4), 189–196 (2003)Google Scholar
  62. 62.
    Mynatt, E.D., Melenhorst, A.S., Fisk, A.D., Rogers, W.A.: Aware technologies for aging in place: understanding user needs and attitudes. IEEE Pervasive Comput. 3(2), 36–41 (2004)Google Scholar
  63. 63.
    Holzinger, A., Nischelwitzer, A.K.: People with motor and mobility impairment: innovative multimodal interfaces to wheelchairs. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061, pp. 989–991. Springer, Heidelberg (2006)Google Scholar
  64. 64.
    Nischelwitzer, A.K., Sproger, B., Mahr, M., Holzinger, A.: MediaWheelie – a best practice example for research in multimodal user interfaces (MUIs). In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061, pp. 999–1005. Springer, Heidelberg (2006)Google Scholar
  65. 65.
    Nischelwitzer, A., Sproger, B., Holzinger, A.: Assistive text input methods: 3D-space writing and other text input methods for powerwheelchair users: best practice examples on the MediaWheelie. In: Kempter, G., Hellberg, P.V. (eds.) Informationen Nutzbar Machen, pp. 75–80. Papst Science Publishers, Lengerich (2006)Google Scholar
  66. 66.
    Debevc, M., Kosec, P., Rotovnik, M., Holzinger, A.: Accessible multimodal web pages with sign language translations for deaf and hard of hearing users. In: 20th International Conference on Database and Expert Systems Application, DEXA 2009, pp. 279–283. IEEE (2009)Google Scholar
  67. 67.
    Debevc, M., Kožuh, I., Kosec, P., Rotovnik, M., Holzinger, A.: Sign language multimedia based interaction for aurally handicapped people. In: Miesenberger, K., Karshmer, A., Penaz, P., Zagler, W. (eds.) ICCHP 2012, Part II. LNCS, vol. 7383, pp. 213–220. Springer, Heidelberg (2012)Google Scholar
  68. 68.
    Holzinger, A., Searle, G., Nischelwitzer, A.K.: On some aspects of improving mobile applications for the elderly. In: Stephanidis, C. (ed.) HCI 2007. LNCS, vol. 4554, pp. 923–932. Springer, Heidelberg (2007)Google Scholar
  69. 69.
    Holzinger, A., Searle, G., Kleinberger, T., Seffah, A., Javahery, H.: Investigating usability metrics for the design and development of applications for the elderly. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 98–105. Springer, Heidelberg (2008)Google Scholar
  70. 70.
    Nischelwitzer, A.K., Lenz, F.-J., Searle, G., Holzinger, A.: Some aspects of the development of low-cost augmented reality learning environments as examples for future interfaces in technology enhanced learning. In: Stephanidis, C. (ed.) HCI 2007. LNCS, vol. 4556, pp. 728–737. Springer, Heidelberg (2007)Google Scholar
  71. 71.
    Sproger, B., Nischelwitzer, A., Holzinger, A.: TeamTable: lowcost team-display hardware and tangible user interfaces facilitate interaction & learning. In: Kempter, G., Hellberg, P.V. (eds.) Informationen Nutzbar Machen, pp. 57–60. Papst Science Publishers, Lengerich (2006)Google Scholar
  72. 72.
    Shyu, C.R., Brodley, C.E., Kak, A.C., Kosaka, A., Aisen, A.M., Broderick, L.S.: ASSERT: a physician-in-the-loop content-based retrieval system for HRCT image databases. Comput. Vis. Image Underst. 75(1–2), 111–132 (1999)Google Scholar
  73. 73.
    Ranganathan, S., Schonbach, C., Kelso, J., Rost, B., Nathan, S., Tan, T.: Towards big data science in the decade ahead from ten years of InCoB and the 1st ISCB-Asia Joint Conference. BMC Bioinform. 12(Suppl 13), S1 (2011)Google Scholar
  74. 74.
    Dhar, V.: Data science and prediction. Commun. ACM 56(12), 64–73 (2013)Google Scholar
  75. 75.
    Kolker, E., Özdemir, V., Martens, L., Hancock, W., Anderson, G., Anderson, N., Aynacioglu, S., Baranova, A., Campagna, S.R., Chen, R.: Toward more transparent and reproducible omics studies through a common metadata checklist and data publications. OMICS: A J. Integr. Biol. 18(1), 10–14 (2014)Google Scholar
  76. 76.
    Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge discovery and interactive data mining in bioinformatics - state-of-the-art, future challenges and research directions. BMC Bioinform. 15(S6), I1 (2014)Google Scholar
  77. 77.
    Morik, K., Brockhausen, P., Joachims, T.: Combining statistical learning with a knowledge-based approach-a case study in intensive care monitoring. In: ICML 1999, pp. 268–277 (1999)Google Scholar
  78. 78.
    Sultan, M., Wigle, D.A., Cumbaa, C., Maziarz, M., Glasgow, J., Tsao, M., Jurisica, I.: Binary tree-structured vector quantization approach to clustering and visualizing microarray data. Bioinformatics 18(Suppl 1), S111–S119 (2002)Google Scholar
  79. 79.
    Koch, I.: Analysis of Multivariate and High-Dimensional Data. Cambridge University Press, New York (2014)MATHGoogle Scholar
  80. 80.
    Olshen, A.B., Hsieh, A.C., Stumpf, C.R., Olshen, R.A., Ruggero, D., Taylor, B.S.: Assessing gene-level translational control from ribosome profiling. Bioinformatics 29(23), 2995–3002 (2013)Google Scholar
  81. 81.
    Li, W., Godzik, A.: CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13), 1658–1659 (2006)Google Scholar
  82. 82.
    Pržulj, N., Wigle, D., Jurisica, I.: Functional topology in a network of protein interactions. Bioinformatics 20(3), 340–348 (2004)Google Scholar
  83. 83.
    Bullard, J.H., Purdom, E., Hansen, K.D., Dudoit, S.: Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinform. 11, 94 (2010)Google Scholar
  84. 84.
    Kiberstis, P.A.: All eyes on epigenetics. Science 335(6069), 637 (2012)Google Scholar
  85. 85.
    Barrera, J., Cesar-Jr., R.M., Ferreira, J.E., Gubitoso, M.D.: An environment for knowledge discovery in biology. Comput. Biol. Med. 34(5), 427–447 (2004)Google Scholar
  86. 86.
    Holzinger, A., Ziefle, M., Röcker, C.: Pervasive Health. Springer, London (2014)Google Scholar
  87. 87.
    Huppertz, B., Holzinger, A.: Biobanks – a source of large biological data sets: open problems and future challenges. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 317–330. Springer, Heidelberg (2014)Google Scholar
  88. 88.
    Shaer, O., Nov, O.: HCI for personal genomics. Interactions 21(5), 32–37 (2014)Google Scholar
  89. 89.
    Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Henry Holt, New York (1982)Google Scholar
  90. 90.
    Donoho, D.L.: High-dimensional data analysis: the curses and blessings of dimensionality. In: AMS Math Challenges Lecture, pp. 1–32 (2000)Google Scholar
  91. 91.
    Holzinger, A.: Extravaganza tutorial on hot ideas for interactive knowledge discovery and data mining in biomedical informatics. In: Ślȩzak, D., Tan, A.-H., Peters, J.F., Schwabe, L. (eds.) BIH 2014. LNCS, vol. 8609, pp. 502–515. Springer, Heidelberg (2014)Google Scholar
  92. 92.
    Stocker, C., Marzi, L.-M., Matula, C., Schantl, J., Prohaska, G., Brabenetz, A., Holzinger, A.: Enhancing patient safety through human-computer information retrieval on the example of german-speaking surgical reports. In: TIR 2014 - 11th International Workshop on Text-Based Information Retrieval, pp. 1–5. IEEE (2014)Google Scholar
  93. 93.
    Gondek, D.C., Lally, A., Kalyanpur, A., Murdock, J.W., Duboue, P.A., Zhang, L., Pan, Y., Qiu, Z.M., Welty, C.: A framework for merging and ranking of answers in DeepQA. IBM J. Res. Dev. 56(3–4), 399–410 (2012)Google Scholar
  94. 94.
    Reuss, E., Menozzi, M., Buchi, M., Koller, J., Krueger, H.: Information access at the point of care: what can we learn for designing a mobile CPR system? Int. J. Med. Inform. 73(4), 363–369 (2004)Google Scholar
  95. 95.
    Choi, J., Chun, J., Lee, K., Lee, S., Shin, D., Hyun, S., Kim, D., Kim, D.: MobileNurse: hand-held information system for point of nursing care. Comput. Methods Programs Biomed. 74(3), 245–254 (2004)Google Scholar
  96. 96.
    Young, P.M.C., Leung, R.M.W., Ho, L.M., McGhee, S.M.: An evaluation of the use of hand-held computers for bedside nursing care. Int. J. Med. Inform. 62(2–3), 189–193 (2001)Google Scholar
  97. 97.
    Moffett, S.E., Menon, A.S., Meites, E.M., Kush, S., Lin, E.Y., Grappone, T., Lowe, H.L.: Preparing doctors for bedside computing. Lancet 362(9377), 86 (2003)Google Scholar
  98. 98.
    Konstantakos, A.K.: Personal computers versus patient care: at the desktop or at the bedside? Curr. Surg. 60(4), 353–355 (2003)Google Scholar
  99. 99.
    Holzinger, A., Kosec, P., Schwantzer, G., Debevc, M., Hofmann-Wellenhof, R., Frühauf, J.: Design and development of a mobile computer application to reengineer workflows in the hospital and the methodology to evaluate its effectiveness. J. Biomed. Inform. 44(6), 968–977 (2011)Google Scholar
  100. 100.
    Holzinger, A., Errath, M.: Mobile computer web-application design in medicine: some research based guidelines. Univ. Access Inf. Soc. Int. J. 6(1), 31–41 (2007)Google Scholar
  101. 101.
    Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum.-Comput. Inter. 16(2–4), 97–166 (2001)Google Scholar
  102. 102.
    Brézillon, P.: Context in problem solving: a survey. Knowl. Eng. Rev. 14(1), 47–80 (1999)Google Scholar
  103. 103.
    Coutaz, J., Crowley, J.L., Dobson, S., Garlan, D.: Context is key. Commun. ACM 48(3), 49–53 (2005)Google Scholar
  104. 104.
    Harper, R., Rodden, T., Rogers, Y., Sellen, A.: Being Human: Human-Computer Interaction in the Year 2020. Microsoft Research, Cambridge (2008)Google Scholar
  105. 105.
    Sellen, A., Rogers, Y., Harper, R., Rodden, T.: Reflecting human values in the digital age. Commun. ACM 52(3), 58–66 (2009)Google Scholar
  106. 106.
    Schmidt, A., Pfleging, B., Alt, F., Sahami, A., Fitzpatrick, G.: Interacting with 21st-century computers. IEEE Pervasive Comput. 11(1), 22–31 (2012)Google Scholar
  107. 107.
    Selker, T., Burleson, W.: Context-aware design and interaction in computer systems. IBM Syst. J. 39(3–4), 880–891 (2000)Google Scholar
  108. 108.
    Holzinger, A., Stocker, C., Dehmer, M.: Big complex biomedical data: towards a taxonomy of data. In: Obaidat, M.S., Filipe, J. (eds.) Communications in Computer and Information Science CCIS 455, pp. 3–18. Springer, Berlin Heidelberg (2014)Google Scholar
  109. 109.
    Catchpoole, D.R., Kennedy, P., Skillicorn, D.B., Simoff, S.: The curse of dimensionality: a blessing to personalized medicine. J. Clin. Oncol. 28(34), E723–E724 (2010)Google Scholar
  110. 110.
    Kanerva, P.: Hyperdimensional computing: an introduction to computing in distributed representation with high-dimensional random vectors. Cogn. Comput. 1(2), 139–159 (2009)Google Scholar
  111. 111.
    Ma, J.H., Wen, J., Huang, R.H., Huang, B.X.: Cyber-individual meets brain informatics. IEEE Intell. Syst. 26(5), 30–37 (2011)Google Scholar
  112. 112.
    Zhong, N., Liu, J., Yao, Y., Wu, J., Lu, S., Qin, Y., Li, K., Wah, B.W.: Web intelligence meets brain informatics. In: Zhong, N., Liu, J., Yao, Y., Wu, J., Lu, S., Li, K. (eds.) Web Intelligence Meets Brain Informatics. LNCS (LNAI), vol. 4845, pp. 1–31. Springer, Heidelberg (2007)Google Scholar
  113. 113.
    Modha, D.S., Ananthanarayanan, R., Esser, S.K., Ndirango, A., Sherbondy, A.J., Singh, R.: Cognitive computing. Commun. ACM 54(8), 62–71 (2011)Google Scholar
  114. 114.
    Jones, B., Carvalho, C., Dobra, A., Hans, C., Carter, C., West, M.: Experiments in stochastic computation for high-dimensional graphical models. Stat. Sci. 20(4), 388–400 (2005)MATHMathSciNetGoogle Scholar
  115. 115.
    Alaghi, A., Hayes, J.P.: Survey of stochastic computing. ACM Trans. Embed. Comput. Syst. (TECS) 12(2s), 92 (2013)Google Scholar
  116. 116.
    Yoshida, R., Ueno, G., Doucet, A.: Special issue: bayesian inference and stochastic computation preface. Ann. Inst. Stat. Math. 66(3), 441–442 (2014)MATHMathSciNetGoogle Scholar
  117. 117.
    Tehrani, S.S., Mannor, S., Gross, W.J.: Survey of stochastic computation on factor graphs. In: 37th International Symposium on Multiple-valued Logic, 2007, ISMVL 2007, pp. 54–54. IEEE (2007)Google Scholar
  118. 118.
    Shanbhag, N.R., Abdallah, R.A., Kumar, R., Jones, D.L.: Stochastic computation. In: Proceedings of the 47th Design Automation Conference, pp. 859–864. ACM (2010)Google Scholar
  119. 119.
    Adar, R., Benenson, Y., Linshiz, G., Rosner, A., Tishby, N., Shapiro, E.: Stochastic computing with biomolecular automata. Proc. Natl. Acad. Sci. U.S.A. 101(27), 9960–9965 (2004)Google Scholar
  120. 120.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)Google Scholar
  121. 121.
    Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10(2), 115–152 (1995)Google Scholar
  122. 122.
    Costanza, E., Fischer, J.E., Colley, J.A., Rodden, T., Ramchurn, S.D., Jennings, N.R.: Doing the laundry with agents: a field trial of a future smart energy system in the home. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 813–822. ACM (2014)Google Scholar
  123. 123.
    Jennings, N.R., Corera, J.M., Laresgoiti, I.: Developing industrial multi-agent systems. In: ICMAS, pp. 423–430 (1995)Google Scholar
  124. 124.
    Roche, B., Guegan, J.F., Bousquet, F.: Multi-agent systems in epidemiology: a first step for computational biology in the study of vector-borne disease transmission. BMC Bioinform. 9, 435 (2008)Google Scholar
  125. 125.
    Kamar, E., Gal, Y.K., Grosz, B.J.: Modeling information exchange opportunities for effective human–computer teamwork. Artif. Intell. 195, 528–550 (2013)Google Scholar
  126. 126.
    Tambe, M., Bowring, E., Jung, H., Kaminka, G., Maheswaran, R., Marecki, J., Modi, P.J., Nair, R., Okamoto, S., Pearce, J.P.: Conflicts in teamwork: hybrids to the rescue. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 3–10. ACM (2005)Google Scholar
  127. 127.
    Jennings, N.R., Moreau, L., Nicholson, D., Ramchurn, S.D., Roberts, S., Rodden, T., Rogers, A.: On human-agent collectives. Commun. ACM 57, 80–88 (2014)Google Scholar
  128. 128.
    Gao, H., Barbier, G., Goolsby, R.: Harnessing the crowdsourcing power of social media for disaster relief. Intell. Syst. IEEE 26(3), 10–14 (2011)Google Scholar
  129. 129.
    Takeuchi, I.: A massively multi-agent simulation system for disaster mitigation. In: Ishida, T., Gasser, L., Nakashima, H. (eds.) MMAS 2005. LNCS (LNAI), vol. 3446, pp. 269–282. Springer, Heidelberg (2005)Google Scholar
  130. 130.
    Menzies, T.: Beyond data mining. IEEE Softw. 30(3), 92 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Andreas Holzinger
    • 1
  • Carsten Röcker
    • 1
    • 2
  • Martina Ziefle
    • 3
  1. 1.Holzinger Group, Research Unit HCI-KDD, Institute for Medical Informatics, Statistics and DocumentationMedical University GrazGrazAustria
  2. 2.Fraunhofer Application Center Industrial Automation (IOSB-INA)LemgoGermany
  3. 3.Human–Computer Interaction CenterRWTH Aachen UniversityAachenGermany

Personalised recommendations