Advertisement

Representing Roots on the Basis of Reeb Graphs in Plant Phenotyping

  • Ines Janusch
  • Walter G. Kropatsch
  • Wolfgang Busch
  • Daniela Ristova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8928)

Abstract

This paper presents a new representation for root images based on Reeb graphs. The representation proposed captures lengths and distances in root structures as well as locations of branches, numbers of lateral roots and the locations of the root tips. An analysis of root images using Reeb graphs is presented and results are compared to ground truth measurements. This paper shows, that the Reeb graph based approach not only captures the characteristics needed for phenotyping of plants, but it also provides a solution to the problem of overlapping roots in the images. Using a Reeb graph based representation, such overlaps can be directly detected without further analysis, during the computation of the graph.

Keywords

Root representation Root structure analysis Topological graphs Reeb graphs Graph-based shape representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biasotti, S., Giorgi, D., Spagnuolo, M., Falcidieno, B.: Reeb graphs for shape analysis and applications. Theoretical Computer Science 392(1–3), 5–22 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Blum, H.: A Transformation for Extracting New Descriptors of Shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)Google Scholar
  3. 3.
    Bott, R.: Lectures on Morse theory, old and new. Bulletin of the American Mathematical Society 7(2), 331–358 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Doraiswamy, H., Natarajan, V.: Efficient algorithms for computing Reeb graphs. Computational Geometry 42(6–7), 606–616 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    EL Khoury, R., Vandeborre, J.P., Daoudi, M.: 3D mesh Reeb graph computation using commute-time and diffusion distances. In: Proceedings SPIE: Three-Dimensional Image Processing (3DIP) and Applications II. vol. 8290, pp. 82900H–82900H-10 (2012)Google Scholar
  6. 6.
    Galkovskyi, T., Mileyko, Y., Bucksch, A., Moore, B., Symonova, O., Price, C., Topp, C., Iyer-Pascuzzi, A., Zurek, P., Fang, S., Harer, J., Benfey, P., Weitz, J.: GiA roots: software for the high throughput analysis of plant root system architecture. BMC Plant Biology 12(1), 116 (2012)CrossRefGoogle Scholar
  7. 7.
    Hayashi, M., Nishimura, M.: Arabidopsis thaliana - a model organism to study plant peroxisomes. Biochimica et Biophysica Acta (BBA) - Molecular. Cell Research 1763(12), 1382–1391 (2006)Google Scholar
  8. 8.
    Iyer-Pascuzzi, A.S., Symonova, O., Mileyko, Y., Hao, Y., Belcher, H., Harer, J., Weitz, J.S., Benfey, P.N.: Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiology 152(3), 1148–1157 (2010)CrossRefGoogle Scholar
  9. 9.
    Janusch, I., Kropatsch, W.G., Busch, W.: Reeb graph based examination of root development. In: Proceedings of the 19th Computer Vision Winter Workshop, pp. 43–50 (Febraury 2014)Google Scholar
  10. 10.
    Lee, D.T.: Medial axis transformation of a planar shape. IEEE Transactions on Pattern Analysis and Machine Intelligence. PAMI–4(4), 363–369 (1982)CrossRefGoogle Scholar
  11. 11.
    Leitner, D., Felderer, B., Vontobel, P., Schnepf, A.: Recovering root system traits using image analysis exemplified by two-dimensional neutron radiography images of lupine. Plant Physiology 164(1), 24–35 (2014)CrossRefGoogle Scholar
  12. 12.
    Ristova, D., Rosas, U., Krouk, G., Ruffel, S., Birnbaum, K.D., Coruzzi, G.M.: Rootscape: A landmark-based system for rapid screening of root architecture in arabidopsis. Plant Physiology 161(3), 1086–1096 (2013)CrossRefGoogle Scholar
  13. 13.
    Slovak, R., Göschl, C., Su, X., Shimotani, K., Shiina, T., Busch, W.: A scalable open-source pipeline for large-scale root phenotyping of Arabidopsis. The Plant Cell Online (2014)Google Scholar
  14. 14.
    Stewart, J.: Calculus. Cengage Learning Emea, 6th edition. international met edn (February 2008)Google Scholar
  15. 15.
    Vossepoel, A., Smeulders, A.: Vector code probability and metrication error in the representation of straight lines of finite length. Computer Graphics and Image Processing 20(4), 347–364 (1982)CrossRefGoogle Scholar
  16. 16.
    Werghi, N., Xiao, Y., Siebert, J.: A functional-based segmentation of human body scans in arbitrary postures. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 36(1), 153–165 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ines Janusch
    • 1
  • Walter G. Kropatsch
    • 1
  • Wolfgang Busch
    • 2
  • Daniela Ristova
    • 2
  1. 1.Institute of Computer Graphics and Algorithms, Pattern Recognition and Image Processing GroupVienna University of TechnologyViennaAustria
  2. 2.Gregor Mendel Institute of Molecular Plant BiologyAustrian Academy of SciencesViennaAustria

Personalised recommendations