Advertisement

Image-Based Phenotyping of the Mature Arabidopsis Shoot System

  • Marco Augustin
  • Yll Haxhimusa
  • Wolfgang Busch
  • Walter G. Kropatsch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8928)

Abstract

The image-based phenotyping of mature plants faces several challenges from the image acquisition to the determination of quantitative characteristics describing their appearance. In this work a framework to extract geometrical and topological traits of 2D images of mature Arabidopsis thaliana is proposed. The phenotyping pipeline recovers the realistic branching architecture of dried and flattened plants in two steps. In the first step, a tracing approach is used for the extraction of centerline segments of the plant. In the second step, a hierarchical reconstruction is done to group the segments according to continuity principles. This paper covers an overview of the relevant processing steps along the proposed pipeline and provides an insight into the image acquisition as well as into the most relevant results from the evaluation process.

Keywords

Image-based phenotyping Geometrical/topological traits Tracing Hierarchical reconstruction Network of curvilinear structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armengaud, P., Zambaux, K., Hills, A., Sulpice, R., Pattison, R.J., Blatt, M.R., Amtmann, A.: EZ-Rhizo: integrated software for the fast and accurate measurement of root system architecture. The Plant Journal 57(5), 945–956 (2009)CrossRefGoogle Scholar
  2. 2.
    Arvidsson, S., Perez-Rodriguez, P., Mueller-Roeber, B.: A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects. New Phytologist 191(3), 895–907 (2011)CrossRefGoogle Scholar
  3. 3.
    Augustin, M.: Extraction of quantitative traits from 2D images of mature arabidopsis plants. Vienna University of Technology, Master’s Thesis (2014)Google Scholar
  4. 4.
    Basu, P., Pal, A., Lynch, J.P., Brown, K.M.: A novel image-analysis technique for kinematic study of growth and curvature. Plant Physiology 145(2), 305–316 (2007)CrossRefGoogle Scholar
  5. 5.
    Benmansour, F., Fua, P., Turetken, E.: Automated reconstruction of tree structures using path classifiers and mixed integer programming. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 566–573 (2012)Google Scholar
  6. 6.
    Bland, J.M., Altman, D.G.: Measuring agreement in method comparison studies. Statistical Methods in Laboratory Medicine 8(2), 135–160 (1999)CrossRefGoogle Scholar
  7. 7.
    Boroujeni, F.Z., Rahmat, O., Wirza, R., Mustapha, N., Affendey, L.S., Maskon, O.: Coronary artery center-line extraction using second order local features. Computational and Mathematical Methods in Medicine (2012)Google Scholar
  8. 8.
    Boroujeni, F.Z., Wirza, R., Rahmat, O., Mustapha, N., Affendey, L.S., Maskon, O.: Automatic selection of initial points for exploratory vessel tracing in fluoroscopic images. Defence Science Journal 61, 443–451 (2011)Google Scholar
  9. 9.
    Brachi, B., Morris, G., Borevitz, J.: Genome-wide association studies in plants: the missing heritability is in the field. Genome Biology 12(10), 232–240 (2011)CrossRefGoogle Scholar
  10. 10.
    Bresenham, J.E.: Algorithm for computer control of a digital plotter. IBM Systems Journal 4(1), 25–30 (1965)CrossRefGoogle Scholar
  11. 11.
    Cobb, J.N., DeClerck, G., Greenberg, A., Clark, R., McCouch, S.: Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotypephenotype relationships and its relevance to crop improvement. Theoretical and Applied Genetics 126(4), 867–887 (2013)Google Scholar
  12. 12.
    Delibasis, K.K., Kechriniotis, A.I., Tsonos, C., Assimakis, N.: Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. Computer Methods and Programs in Biomedicine 100(2), 108–122 (2010)CrossRefGoogle Scholar
  13. 13.
    Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images - a survey. Computer Methods and Programs in Biomedicine 108(1), 407–433 (2012)CrossRefGoogle Scholar
  14. 14.
    French, A.P., Ubeda-Tomas, S., Holman, T., Bennett, M., Pridmore, T.: High-throughput quantification of root growth using a novel image-analysis tool. Plant Physiology 150(4), 1784–1795 (2009)CrossRefGoogle Scholar
  15. 15.
    Furbank, R.T., Tester, M.: Phenomics technologies to relieve the phenotyping bottleneck. Trends in Plant Science 16(12), 635–644 (2011)Google Scholar
  16. 16.
    Godin, C., Costes, E., Sinoquet, H.: A method for describing plant architecture which integrates topology and geometry. Annals of Botany 84(3), 343–357 (1999)CrossRefGoogle Scholar
  17. 17.
    Huang, Y., Zhang, J., Huang, Y.: An automated computational framework for retinal vascular network labeling and branching order analysis. Microvascular Research 84(2), 169–177 (2012)CrossRefGoogle Scholar
  18. 18.
    Lin, K.S., Tsai, C.L., Tsai, C.H., Sofka, M., Chen, S.J., Lin, W.Y.: Retinal vascular tree reconstruction with anatomical realism. IEEE Transactions on Biomedical Engineering 59(12), 3337–3347 (2012)CrossRefGoogle Scholar
  19. 19.
    Longair, M.H., Baker, D.A., Armstrong, J.D.: Simple neurite tracer: Open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics (2011)Google Scholar
  20. 20.
    Martínez-Pérez, MElena, Hughes, Alun D., Stanton, Alice V., Thom, Simon A., Bharath, Anil A., Parker, Kim H.: Retinal blood vessel segmentation by means of scale-space analysis and region growing. In: Taylor, Chris, Colchester, Alain (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 90–97. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  21. 21.
    Martinez-Perez, M.E., Hughes, A.D., Stanton, A.V., Thom, S.A., Chapman, N., Bharath, A.A., Parker, K.H.: Retinal vascular tree morphology: a semi-automatic quantification. IEEE Trans. Biomed. Engineering 49(8), 912–917 (2002)CrossRefGoogle Scholar
  22. 22.
    Meijering, E.: Neuron tracing in perspective. Cytometry Part A 77A(7), 693–704 (2010)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Naeem, A., French, A.P., Wells, D.M., Pridmore, T.: High-throughput feature counting and measurement of roots. Bioinformatics 27(9), 1337–1338 (2011)CrossRefGoogle Scholar
  24. 24.
    Nguyen, U.T.V., Bhuiyan, A., Park, L.A.F., Ramamohanarao, K.: An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognition 46(3), 703–715 (2013)CrossRefGoogle Scholar
  25. 25.
    Rousseeuw, P.J., Driessen, K.V.: A fast algorithm for the minimum covariance determinant estimator. Technometrics 41(3), 212–223 (1999)CrossRefGoogle Scholar
  26. 26.
    Rousseeuw, P.J., Leroy, A.M.: Robust regression and outlier detection. John Wiley & Sons Inc., New York (1987) CrossRefzbMATHGoogle Scholar
  27. 27.
    Sozzani, R., Benfey, P.: High-throughput phenotyping of multicellular organisms: finding the link between genotype and phenotype. Genome Biology 12(3), 219–225 (2011)CrossRefGoogle Scholar
  28. 28.
    Subramanian, R., Spalding, E.P., Ferrier, N.J.: A high throughput robot system for machine vision based plant phenotype studies. Machine Vision and Applications 24(3), 619–636 (2013)CrossRefGoogle Scholar
  29. 29.
    Sun, Y.: Automated identification of vessel contours in coronary arteriograms by an adaptive tracking algorithm. IEEE Trans. Med. Imaging 8(1), 78–88 (1989)CrossRefGoogle Scholar
  30. 30.
    Tueretken, E., Gonzalez, G., Blum, C., Fua, P.: Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors. Neuroinformatics 9(2–3), 279–302 (2011)CrossRefGoogle Scholar
  31. 31.
    Weigel, D.: Natural variation in arabidopsis: From molecular genetics to ecological genomics. Plant Physiology 158(1), 2–22 (2012)CrossRefMathSciNetGoogle Scholar
  32. 32.
    WinRHIZO: Winrhizo pro 2004a software: Root analysis. Regent Instruments Inc., Quebec, Canada (2004)Google Scholar
  33. 33.
    Yin, Y., Adel, M., Bourennane, S.: Retinal vessel segmentation using a probabilistic tracking method. Pattern Recognition 45(4), 1235–1244 (2012)CrossRefzbMATHGoogle Scholar
  34. 34.
    Zana, F., Klein, J.C.: Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation. Trans. Img. Proc. 10(7), 1010–1019 (2001)CrossRefzbMATHGoogle Scholar
  35. 35.
    Zhang, Y., Zhou, X., Degterev, A., Lipinski, M., Adjeroh, D., Yuan, J., Wong, S.: A novel tracing algorithm for high throughput imaging screening of neuron-based assays. Journal of Neuroscience Methods 160(1), 149–162 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marco Augustin
    • 1
  • Yll Haxhimusa
    • 1
  • Wolfgang Busch
    • 2
  • Walter G. Kropatsch
    • 1
  1. 1.Pattern Recognition and Image Processing GroupVienna University of TechnologyViennaAustria
  2. 2.Gregor Mendel Institute of Molecular Plant BiologyAustrian Academy of SciencesViennaAustria

Personalised recommendations