Advertisement

Texture-Based Leaf Identification

  • Milan SulcEmail author
  • Jiri Matas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8928)

Abstract

A novel approach to visual leaf identification is proposed. A leaf is represented by a pair of local feature histograms, one computed from the leaf interior, the other from the border. The histogrammed local features are an improved version of a recently proposed rotation and scale invariant descriptor based on local binary patterns (LBPs).

Describing the leaf with multi-scale histograms of rotationally invariant features derived from sign- and magnitude-LBP provides a desirable level of invariance. The representation does not use colour.

Using the same parameter settings in all experiments and standard evaluation protocols, the method outperforms the state-of-the-art on all tested leaf sets - the Austrian Federal Forests dataset, the Flavia dataset, the Foliage dataset, the Swedish dataset and the Middle European Woods dataset - achieving excellent recognition rates above 99%.

Preliminary results on images from the north and south regions of France obtained from the LifeCLEF’14 Plant task dataset indicate that the proposed method is also applicable to recognizing the environmental conditions the plant has been exposed to.

Keywords

Support Vector Machine Local Binary Pattern Probabilistic Neural Network Zernike Moment Linear Support Vector Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agarwal, G., Belhumeur, P., Feiner, S., Jacobs, D., Kress, W.J., Ramamoorthi, R., Bourg, N.A., Dixit, N., Ling, H., Mahajan, D., et al.: First steps toward an electronic field guide for plants. Taxon 55(3), 597–610 (2006)CrossRefGoogle Scholar
  2. 2.
    Ahonen, T., Matas, J., He, C., Pietikäinen, M.: Rotation invariant image description with local binary pattern histogram fourier features. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 61–70. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  3. 3.
    Barthélémy, D., Boujemaa, N., Mathieu, D., Molino, J.F., Bonnet, P., Enficiaud, R., Mouysset, E., Couteron, P.: The pl@ntnet project: A computational plant identification and collaborative information system. Tech. Rep., XIII World Forestry Congress (2009)Google Scholar
  4. 4.
    Belhumeur, P.N., Chen, D., Feiner, S.K., Jacobs, D.W., Kress, W.J., Ling, H., Lopez, I., Ramamoorthi, R., Sheorey, S., White, S., Zhang, L.: Searching the world’s herbaria: a system for visual identification of plant species. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 116–129. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  5. 5.
    Fiel, S., Sablatnig, R.: Automated identification of tree species from images of the bark, leaves and needles. In: Proc. of 16th Computer Vision Winter Workshop, Mitterberg, Austria, pp. 1–6 (2011)Google Scholar
  6. 6.
    Guo, Z., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing 19(6), 1657–1663 (2010)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Kadir, A., Nugroho, L.E., Santosa, P.I.: Experiments of zernike moments for leaf identification 1 (2012)Google Scholar
  8. 8.
    Kadir, A., Nugroho, L.E., Susanto, A., Santosa, P.I.: A comparative experiment of several shape methods in recognizing plants. International Journal of Computer Science & Information Technology 3(3) (2011)Google Scholar
  9. 9.
    Kadir, A., Nugroho, L.E., Susanto, A., Santosa, P.I.: Neural network application on foliage plant identification. International Journal of Computer Applications 29 (2011)Google Scholar
  10. 10.
    Kadir, A., Nugroho, L.E., Susanto, A., Santosa, P.I.: Performance improvement of leaf identification system using principal component analysis. International Journal of Advanced Science & Technology 44 (2012)Google Scholar
  11. 11.
    Karuna, G., Sujatha, B., Giet, R., Reddy, P.C.: An efficient representation of shape for object recognition and classification using circular shift methodGoogle Scholar
  12. 12.
    Kim, S.J., Kim, B.W., Kim, D.P.: Tree recognition for landscape using by combination of features of its leaf, flower and bark. In: 2011 Proceedings of SICE Annual Conference (SICE) (2011)Google Scholar
  13. 13.
    Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C., Soares, J.V.B.: Leafsnap: a computer vision system for automatic plant species identification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 502–516. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  14. 14.
    Lee, K.B., Chung, K.W., Hong, K.S.: An implementation of leaf recognition system (2013)Google Scholar
  15. 15.
    Lee, K.B., Hong, K.S.: Advanced leaf recognition based on leaf contour and centroid for plant classification. In: The 2012 International Conference on Information Science and Technology, pp. 133–135 (2012)Google Scholar
  16. 16.
    Lin, H.T., Lin, C.J., Weng, R.C.: A note on platts probabilistic outputs for support vector machines. Machine Learning 68(3) (2007)Google Scholar
  17. 17.
    Mäenpää, T., Pietikäinen, M.: Multi-scale binary patterns for texture analysis. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 885–892. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  18. 18.
    Nilsback, M.E., Zisserman, A.: An Automatic Visual Flora: Segmentation and Classification of Flower Images. Ph.D. thesis, Oxford University (2009)Google Scholar
  19. 19.
    Novotný, P., Suk, T.: Leaf recognition of woody species in central europe. Biosystems Engineering 115(4), 444–452 (2013)CrossRefGoogle Scholar
  20. 20.
    Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture measures with classification based on kullback discrimination of distributions. In: Proc. IAPR 1994, vol. 1, pp. 582–585 (1994)Google Scholar
  21. 21.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. PAMI 24(7), 971–987 (2002)CrossRefGoogle Scholar
  22. 22.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29(1), 51–59 (1996)CrossRefGoogle Scholar
  23. 23.
    Pietikäinen, M., Ojala, T., Xu, Z.: Rotation-invariant texture classification using feature distributions. Pattern Recognition 33(1), 43–52 (2000)CrossRefGoogle Scholar
  24. 24.
    Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers 10(3) (1999)Google Scholar
  25. 25.
    Pydipati, R., Burks, T., Lee, W.: Identification of citrus disease using color texture features and discriminant analysis. Computers and Electronics In Agriculture 52(1), 49–59 (2006)CrossRefGoogle Scholar
  26. 26.
    Qi, X., Xiao, R., Guo, J., Zhang, L.: Pairwise rotation invariant co-occurrence local binary pattern. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 158–171. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  27. 27.
    Shalev-Shwartz, S., Zhang, T.: Stochastic dual coordinate ascent methods for regularized loss minimization. arXiv preprint arXiv:1209.1873 (2012)
  28. 28.
    Söderkvist, O.: Computer vision classification of leaves from swedish trees (2001)Google Scholar
  29. 29.
    Sulc, M., Matas, J.: Kernel-mapped histograms of multi-scale lbps for tree bark recognition. In: 2013 28th International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 82–87 (November 2013)Google Scholar
  30. 30.
    Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms (2008). http://www.vlfeat.org/
  31. 31.
    Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. PAMI 34(3) (2011)Google Scholar
  32. 32.
    Wu, J., Rehg, J.M.: Centrist: A visual descriptor for scene categorization. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(8), 1489–1501 (2011)CrossRefGoogle Scholar
  33. 33.
    Wu, S.G., Bao, F.S., Xu, E.Y., Wang, Y.X., Chang, Y.F., Xiang, Q.L.: A leaf recognition algorithm for plant classification using probabilistic neural network. In: 2007 IEEE International Symposium on Signal Processing and Information Technology, pp. 11–16. IEEE (2007)Google Scholar
  34. 34.
    Zhao, G., Ahonen, T., Matas, J., Pietikainen, M.: Rotation-invariant image and video description with local binary pattern features. IEEE Transactions on Image Processing 21(4), 1465–1477 (2012)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Center for Machine Perception, Department of Cybernetics, Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations