Skip to main content

SPARTAN/SEXTANT/COMPASS: Advancing Space Rover Vision via Reconfigurable Platforms

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9040)

Abstract

Targeting enhanced navigational speed and autonomy for the space exploration rovers, researchers are gradually turning to reconfigurable computing and FPGAs. High-density space-grade FPGAs will enable the acceleration of high-complexity computer vision algorithms for improving the localization and mapping functions of the future Mars rovers. In the projects SPARTAN/SEXTANT/COMPASS of the European Space Agency, we study the potential use of FPGAs for implementing a variety of stereo correspondence, feature extraction, and visual odometry algorithms, all with distinct cost-performance tradeoffs. The most efficient of the developed accelerators will assist the slow space-grade CPU in completing the visual tasks of the rover faster, by one order of magnitude, and thus, will allow the future missions to visit larger areas on Mars. Our work bases on a custom HW/SW co-design methodology, parallel architecture design, optimization techniques, tradeoff analysis, and system tuning with Martian-like scenarios.

Keywords

  • Space rovers
  • Computer vision
  • Stereo correspondence
  • Feature extraction
  • Visual odometry
  • HW/SW co-design
  • FPGA acceleration

Projects funded by the European Space Agency (reference numbers AO/1-6512/10/NL/EK, 4000103357/11/NL/EK, 4000111213/14/NL/PA).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-16214-0_44
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-16214-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Matthies, L., Maimone, M., Johnson, A., Cheng, Y., Willson, R., Villalpando, C., Goldberg, S., Huertas, A., Stein, A., Angelova, A.: Computer Vision on Mars. International Journal of Computer Vision 75(1), 67–92 (2007)

    CrossRef  Google Scholar 

  2. Howard, T.M., Morfopoulos, A., Morrison, J., Kuwata, Y., Villalpando, C., Matthies, L., McHenry, M.: Enabling continuous planetary rover navigation through FPGA stereo and visual odometry. In: IEEE Aerospace Conference (2012)

    Google Scholar 

  3. Johnson, A., Goldberg, S., Cheng, Y., Matthies, L.: Robust and efficient stereo feature tracking for visual odometry. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 39–46, May 2008

    Google Scholar 

  4. Poulakis, P., Joudrier, L., Wailliez, S., Kapellos, K.: 3DROV: a planetary rover system design, simulation and verification tool. In: Proc. of the 10th Int’l Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS-08) (2008)

    Google Scholar 

  5. Woods, M., Shaw, A., Tidey, E., Pham, B.V., Artan, U., Maddison, B., Cross, G.: SEEKER-autonomous long range rover navigation for remote exploration. In: Int’l Symp. on Artificial Intelligence, Robotics and Automation in Space, Italy (2012)

    Google Scholar 

  6. Furgale, P., Carle, P., Enright, J., Barfoot, T.D.: The Devon Island Rover Navigation Dataset. Int’l Journal Robotics Research 31(6), 707–713 (2012)

    CrossRef  Google Scholar 

  7. George, L., Diamantopoulos, D., Siozios, K., Soudris, D., Rodrigalvarez, M.A.: Hardware implementation of stereo correspondence algorithm for the exomars mission. In: 2012 22nd International Conference on Field Programmable Logic and Applications (FPL), pp. 667–670. IEEE (2012)

    Google Scholar 

  8. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer (2010)

    Google Scholar 

  9. Scaramuzza, D., Fraundorfer, F.: Visual odometry [tutorial]. IEEE Robot. Automat. Mag. 18(4), 80–92 (2011)

    CrossRef  Google Scholar 

  10. Bay, H., Ess, E., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). Comp. Vision and Image Understanding 110(3), 346–359 (2008)

    CrossRef  Google Scholar 

  11. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  12. Rosten, E., Porter, R., Drummond, T.: Faster and better: A machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2010)

    CrossRef  Google Scholar 

  13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int’l Journal of Computer Vision 60(2), 91–110 (2004)

    CrossRef  Google Scholar 

  14. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Lentaris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lentaris, G. et al. (2015). SPARTAN/SEXTANT/COMPASS: Advancing Space Rover Vision via Reconfigurable Platforms. In: Sano, K., Soudris, D., Hübner, M., Diniz, P. (eds) Applied Reconfigurable Computing. ARC 2015. Lecture Notes in Computer Science(), vol 9040. Springer, Cham. https://doi.org/10.1007/978-3-319-16214-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16214-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16213-3

  • Online ISBN: 978-3-319-16214-0

  • eBook Packages: Computer ScienceComputer Science (R0)