Skip to main content

Hybrid Mesh Deformation Tool for Offshore Wind Turbines Aeroelasticity Prediction

  • Chapter

Part of the Springer Tracts in Mechanical Engineering book series (STME)

Abstract

This paper describes a new development aiming to deform multi-block structured viscous meshes during fluid–solid interaction simulations. The focus is put on the deformation of external aerodynamic configurations accounting for large structural displacements and 3D multi-million cells meshes. In order to preserve the quality of the resulting mesh, it is understood as a fictitious continuum during the deformation process. Linear elasticity equations are solved with a multigrid and parallelized solver, assuming a heterogeneous distribution of fictitious material Young modulus. In order to improve the efficiency of the system resolution an approximate initial solution is obtained prior to the elastic deformation, based on Radial Basis Functions and Transfinite interpolators. To validate the performances of the whole algorithm, the DTU-10MW reference offshore wind turbine described by Bak et al. is analyzed (Description of the DTU 10 MW reference wind turbine. Technical report. Technical University of Denmark Wind Energy, Roskilde, 2013).

Keywords

  • Radial Basis Function
  • Wind Turbine
  • Mesh Quality
  • Mesh Deformation
  • Offshore Wind Turbine

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-16202-7_8
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-16202-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6

References

  1. Arabi S, Camarero R, Guibault F (2012) Unstructured mesh motion using sliding cells and mapping domains. In: 20th annual conference of the CFD Society of Canada

    Google Scholar 

  2. Bak C, Zahle F, Bitsche R, Kim T, Yde A, Henriksen LC, Natajaran A, Hansen MH (2013) Description of the DTU 10 MW reference wind turbine. Technical report. Technical University of Denmark Wind Energy, Roskilde. http://dtu-10mw-rwt.vindenergi.dtu.dk

  3. Bos FM, van Oudheusden BW, Bijl H (2013) Radial basis function based mesh deformation applied to simulation of flow around flapping wings. Comput Fluids 79:167–177. ISSN 00457930. doi:10.1016/j.compfluid.2013.02.004

    Google Scholar 

  4. De Boer A, Van der Schoot M, Bijl H (2007) Mesh deformation based on radial basis function interpolation. Comput Struct 85(11–14):784–795. ISSN 00457949. doi:10.1016/j.compstruc.2007.01.013

    Google Scholar 

  5. Debrabandere F (2014) Computational methods for industrial fluid-structure interactions. PhD thesis, Université de Mons (UMONS)

    Google Scholar 

  6. Fenwick CL, Allen CB (2007) Flutter analysis of the BACT wing with consideration of control surface representation. In: 25th AIAA applied aerodynamics conference

    Google Scholar 

  7. Heege A, Gaull A, Horcas SG, Bonnet P, Defourny M (2013) Experiences in controller adaptations of floating wind turbines through advanced numerical simulation. In: AWEA wind power conference, Chicago

    Google Scholar 

  8. Hermansson J, Hansbo P (2003) A variable diffusion method for mesh smoothing. Commun Numer Methods Eng 19(11):897–908. ISSN 10698299. doi:10.1002/cnm.639

    Google Scholar 

  9. Hübner B, Walhorn E, Dinkler D (2004) A monolithic approach to fluid-structure interaction using space-time finite elements. Comput Methods Appl Mech Eng 193(23–26):2087–2104. ISSN 00457825. doi:10.1016/j.cma.2004.01.024

    Google Scholar 

  10. Jameson A (1991) Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. In: 10th computational fluid dynamics conference. Fluid dynamics and co-located conferences. American Institute of Aeronautics and Astronautics, Honolulu. doi:10.2514/6.1991-1596

    Google Scholar 

  11. Jasak H, Weller HG (2000) Application of the finite volume method and unstructured meshes to linear elasticity. Int J Numer Methods Eng 48: 267–287

    MATH  CrossRef  Google Scholar 

  12. Jonkman JM, Buhl ML Jr (2007) Development and verification of a fully coupled simulator for offshore wind turbines. In: NREL/CP-500-40979. National Renewable Energy Laboratory

    Google Scholar 

  13. Karman SL Jr (2010) Virtual control volumes for two-dimensional unstructured elliptic smoothing. In: 19th international meshing roundtable (IMR), pp 121–142

    Google Scholar 

  14. Lai KL, Tsai HM, Liu F (2003) Application of spline matrix for mesh deformation with dynamic multi-block grids. In: 21st AIAA applied aerodynamics conference. doi:10.2514/6.2003-3514

    Google Scholar 

  15. Li Y, Paik KJ, Xing T, Carrica PM (2012) Dynamic overset CFD simulations of wind turbine aerodynamics. Renew Energy 37(1):285–298. ISSN 09601481. doi:10.1016/j.renene.2011.06.029

    Google Scholar 

  16. Merkle CL, Sullivan JY, Buelow PEO, Venkateswaran S (1998) Computation of flows with arbitrary equations of state. AIAA J 36(4): 515–521. ISSN 0001-1452. doi:10.2514/2.424

    Google Scholar 

  17. NUMECA International (2013) FINETM/Turbo v9.0 user manual

    Google Scholar 

  18. Sayma A, Vahdati M, Imregun M (2000) An integrated nonlinear approach for turbomachinery forced response prediction. Part I: Formulation. J Fluids Struct 14(1):87–101. ISSN 08899746. doi:10.1006/jfls.1999.0253

    Google Scholar 

  19. Simulia DSC (2008) Abaqus Analysis version 6.8 user’s manual

    Google Scholar 

  20. Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. In: 30th aerospace sciences meeting and exhibit. Aerospace sciences meetings. American Institute of Aeronautics and Astronautics, Reno. doi:10.2514/6.1992-439

    Google Scholar 

  21. Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid-structure interactions with large displacements. ASME J Appl Mech 70(1):58. ISSN 00218936. doi:10.1115/1.1530635

    Google Scholar 

  22. Yang Z, Mavriplis DJ (2005) Unstructured dynamic meshes with higher-order time integration schemes for the unsteady Navier-Stokes equations. In: 41th aerospace sciences meeting and exhibit. American Institute of Aeronautics and Astronautics, Reno

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the European Commission (EC) for their research grant under the project FP7-PEOPLE-2012-ITN 309395 MARE-WINT (new MAterials and REliability in offshore WINd Turbines technology), see: http://marewint.eu/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio González Horcas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Horcas, S.G., Debrabandere, F., Tartinville, B., Hirsch, C., Coussement, G. (2015). Hybrid Mesh Deformation Tool for Offshore Wind Turbines Aeroelasticity Prediction. In: Ferrer, E., Montlaur, A. (eds) CFD for Wind and Tidal Offshore Turbines. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-16202-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16202-7_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16201-0

  • Online ISBN: 978-3-319-16202-7

  • eBook Packages: EngineeringEngineering (R0)