Abstract
This paper aims to investigate whether micro-facial movement sequences can be distinguished from neutral face sequences. As a micro-facial movement tends to be very quick and subtle, classifying when a movement occurs compared to the face without movement can be a challenging computer vision problem. Using local binary patterns on three orthogonal planes and Gaussian derivatives, local features, when interpreted by machine learning algorithms, can accurately describe when a movement and non-movement occurs. This method can then be applied to help aid humans in detecting when the small movements occur. This also differs from current literature as most only concentrate in emotional expression recognition. Using the CASME II dataset, the results from the investigation of different descriptors have shown a higher accuracy compared to state-of-the-art methods.
Chapter PDF
Similar content being viewed by others
References
Bassili, J.N.: Emotion recognition: the role of facial movement and the relative importance of upper and lower areas of the face. Journal of Personality and Social Psychology 37(11), 2049 (1979)
Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)
Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011). http://www.csie.ntu.edu.tw/~cjlin/libsvm
Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297 (1995)
Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press (1978)
Ekman, P.: Emotions Revealed: Understanding Faces and Feelings. Phoenix (2004)
Ekman, P.: Lie catching and microexpressions. In: The Philosophy of Deception. Oxford University Press (2009)
Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector classification (2003). https://www.cs.sfu.ca/people/Faculty/teaching/726/spring11/svmguide.pdf
Jaiantilal, A.: Random forest (regression, classification and clustering) implementation for matlab (2009). http://code.google.com/p/randomforest-matlab
Leightley, D., Darby, J., Li, B., McPhee, J., Yap, M.H.: Human activity recognition for physical rehabilitation. In: International Conference on Systems, Man, and Cybernetics (SMC), pp. 261–266 (2013)
Li, X., Pfister, T., Huang, X., Zhao, G., Pietikäinen, M.: A spontaneous micro-expression database: Inducement, collection and baseline. In: FG (2013)
Matsumoto, D., Hwang, H.S.: Evidence for training the ability to read micro-expressions of emotion. Motivation and Emotion 35, 181–191 (2011)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. PAMI 24, 971–987 (2002)
Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29(1), 51–59 (1996)
Pfister, T., Li, X., Zhao, G., Pietikainen, M.: Recognising spontaneous facial micro-expressions. In: ICCV (2011)
Polikovsky, S., Kameda, Y., Ohta, Y.: Facial micro-expressions recognition using high speed camera and 3d-gradient descriptor. In: ICDP (2009)
Romeny, B.M.H.: Gaussian derivatives. In: Front-End Vision and Multi-Scale Image Analysis. Springer, The Netherlands (2003)
Ruiz-Hernandez, J., Lux, A., Crowley, J.: Face detection by cascade of gaussian derivates classifiers calculated with a half-octave pyramid. In: International Conference on Automatic Face Gesture Recognition, pp. 1–6, September 2008
Shreve, M., Godavarthy, S., Goldgof, D., Sarkar, S.: Macro- and micro-expression spotting in long videos using spatio-temporal strain. In: FG (2011)
Statnikov, A., Wang, L., Aliferis, C.: A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 9(1), 319 (2008)
Tian, Y.L., Kanade, T., Cohn, J.F.: Facial expression analysis. In: Handbook of Face Recognition. Springer, New York (2005)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR (2001)
Wang, S.J., Chen, H.L., Yan, W.J., Chen, Y.H., Fu, X.: Face recognition and micro-expression recognition based on discriminant tensor subspace analysis plus extreme learning machine. Neural Processing Letters 39, 25–43 (2014)
Wang, S.J., Yan, W.J., Li, X., Zhao, G., Fu, X.: Micro-expression recognition using dynamic textures on tensor independent color space. In: ICPR (2014)
Yan, W.J., Li, X., Wang, S.J., Zhao, G., Liu, Y.J., Chen, Y.H., Fu, X.: Casme ii: An improved spontaneous micro-expression database and the baseline evaluation. PLoS ONE 9, e86041 (2014)
Zeng, Z., Pantic, M., Roisman, G., Huang, T.: A survey of affect recognition methods: Audio, visual, and spontaneous expressions. PAMI 31, 39–58 (2009)
Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. PAMI 29, 915–928 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Davison, A.K., Yap, M.H., Costen, N., Tan, K., Lansley, C., Leightley, D. (2015). Micro-Facial Movements: An Investigation on Spatio-Temporal Descriptors. In: Agapito, L., Bronstein, M., Rother, C. (eds) Computer Vision - ECCV 2014 Workshops. ECCV 2014. Lecture Notes in Computer Science(), vol 8926. Springer, Cham. https://doi.org/10.1007/978-3-319-16181-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-16181-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16180-8
Online ISBN: 978-3-319-16181-5
eBook Packages: Computer ScienceComputer Science (R0)