Micro-Facial Movements: An Investigation on Spatio-Temporal Descriptors

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8926)


This paper aims to investigate whether micro-facial movement sequences can be distinguished from neutral face sequences. As a micro-facial movement tends to be very quick and subtle, classifying when a movement occurs compared to the face without movement can be a challenging computer vision problem. Using local binary patterns on three orthogonal planes and Gaussian derivatives, local features, when interpreted by machine learning algorithms, can accurately describe when a movement and non-movement occurs. This method can then be applied to help aid humans in detecting when the small movements occur. This also differs from current literature as most only concentrate in emotional expression recognition. Using the CASME II dataset, the results from the investigation of different descriptors have shown a higher accuracy compared to state-of-the-art methods.


Micro-movement detection Facial analysis Random forests Support vector machines 


  1. 1.
    Bassili, J.N.: Emotion recognition: the role of facial movement and the relative importance of upper and lower areas of the face. Journal of Personality and Social Psychology 37(11), 2049 (1979)CrossRefGoogle Scholar
  2. 2.
    Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011).
  4. 4.
    Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297 (1995)zbMATHGoogle Scholar
  5. 5.
    Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press (1978)Google Scholar
  6. 6.
    Ekman, P.: Emotions Revealed: Understanding Faces and Feelings. Phoenix (2004)Google Scholar
  7. 7.
    Ekman, P.: Lie catching and microexpressions. In: The Philosophy of Deception. Oxford University Press (2009)Google Scholar
  8. 8.
    Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vector classification (2003).
  9. 9.
    Jaiantilal, A.: Random forest (regression, classification and clustering) implementation for matlab (2009).
  10. 10.
    Leightley, D., Darby, J., Li, B., McPhee, J., Yap, M.H.: Human activity recognition for physical rehabilitation. In: International Conference on Systems, Man, and Cybernetics (SMC), pp. 261–266 (2013)Google Scholar
  11. 11.
    Li, X., Pfister, T., Huang, X., Zhao, G., Pietikäinen, M.: A spontaneous micro-expression database: Inducement, collection and baseline. In: FG (2013)Google Scholar
  12. 12.
    Matsumoto, D., Hwang, H.S.: Evidence for training the ability to read micro-expressions of emotion. Motivation and Emotion 35, 181–191 (2011)CrossRefGoogle Scholar
  13. 13.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. PAMI 24, 971–987 (2002)CrossRefGoogle Scholar
  14. 14.
    Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29(1), 51–59 (1996)CrossRefGoogle Scholar
  15. 15.
    Pfister, T., Li, X., Zhao, G., Pietikainen, M.: Recognising spontaneous facial micro-expressions. In: ICCV (2011)Google Scholar
  16. 16.
    Polikovsky, S., Kameda, Y., Ohta, Y.: Facial micro-expressions recognition using high speed camera and 3d-gradient descriptor. In: ICDP (2009)Google Scholar
  17. 17.
    Romeny, B.M.H.: Gaussian derivatives. In: Front-End Vision and Multi-Scale Image Analysis. Springer, The Netherlands (2003)Google Scholar
  18. 18.
    Ruiz-Hernandez, J., Lux, A., Crowley, J.: Face detection by cascade of gaussian derivates classifiers calculated with a half-octave pyramid. In: International Conference on Automatic Face Gesture Recognition, pp. 1–6, September 2008Google Scholar
  19. 19.
    Shreve, M., Godavarthy, S., Goldgof, D., Sarkar, S.: Macro- and micro-expression spotting in long videos using spatio-temporal strain. In: FG (2011)Google Scholar
  20. 20.
    Statnikov, A., Wang, L., Aliferis, C.: A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 9(1), 319 (2008)CrossRefGoogle Scholar
  21. 21.
    Tian, Y.L., Kanade, T., Cohn, J.F.: Facial expression analysis. In: Handbook of Face Recognition. Springer, New York (2005)Google Scholar
  22. 22.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR (2001)Google Scholar
  23. 23.
    Wang, S.J., Chen, H.L., Yan, W.J., Chen, Y.H., Fu, X.: Face recognition and micro-expression recognition based on discriminant tensor subspace analysis plus extreme learning machine. Neural Processing Letters 39, 25–43 (2014)CrossRefGoogle Scholar
  24. 24.
    Wang, S.J., Yan, W.J., Li, X., Zhao, G., Fu, X.: Micro-expression recognition using dynamic textures on tensor independent color space. In: ICPR (2014)Google Scholar
  25. 25.
    Yan, W.J., Li, X., Wang, S.J., Zhao, G., Liu, Y.J., Chen, Y.H., Fu, X.: Casme ii: An improved spontaneous micro-expression database and the baseline evaluation. PLoS ONE 9, e86041 (2014)CrossRefGoogle Scholar
  26. 26.
    Zeng, Z., Pantic, M., Roisman, G., Huang, T.: A survey of affect recognition methods: Audio, visual, and spontaneous expressions. PAMI 31, 39–58 (2009)CrossRefGoogle Scholar
  27. 27.
    Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. PAMI 29, 915–928 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Manchester Metropolitan UniversityManchesterUK
  2. 2.The Emotional Intelligence AcademyWalkdenUK

Personalised recommendations