Advertisement

Sub-Threshold Operation: Theory and Challenges

  • Nele Reynders
  • Wim Dehaene
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

In order to design circuits operating at ultra-low supply voltages, an understanding about the sub-threshold behavior of CMOS transistors must first be obtained. Therefore, this chapter discusses the fundamentals of sub-threshold operation, by looking at the general principles of transistor theory and by briefly giving some adequate background of the device physics. The different operating regions of a CMOS transistor are examined, as well as the definition of the threshold voltage and the parameters by which it is influenced. This chapter also provides an overview of the different challenges which are introduced by operating a circuit in the sub-threshold or weak inversion region. Insight in these circuit-level challenges is essential to efficiently and successfully design ultra-low-voltage systems. Subsequently, the impact of CMOS technology scaling on circuits operating in the ultra-low-voltage region is studied. This chapter aims to provide an answer to the benefits and disadvantages of scaling on such implementations. First, an equation to determine the minimum feasible supply voltage for digital circuits is derived. Out of this equation, a theoretical minimum as well as a practical minimum supply for a specific technology can be calculated. Second, scaling analysis focuses on the two CMOS technologies at hand of this book. Furthermore, the (in)accuracy of weak inversion transistor models is also explored. To conclude, the chapter explains what the difference is between the various transistor types offered by modern CMOS technologies and which type of transistors is used throughout the prototypes presented in this work.

Keywords

Threshold Voltage CMOS Technology nMOS Transistor pMOS Transistor Weak Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bol D, Ambroise R, Flandre D, Legat JD (2008) Analysis and minimization of practical energy in 45nm subthreshold logic circuits. In: Proceedings of the IEEE international conference on computer design (ICCD), pp 294–300. DOI:  10.1109/ICCD.2008.4751876
  2. 2.
    Bol D, Ambroise R, Flandre D, Legat JD (2009) Interests and limitations of technology scaling for subthreshold logic. IEEE Trans Very Large Scale Integ (VLSI) Syst 17(10):1508–1519. DOI:  10.1109/TVLSI.2008.2005413 CrossRefGoogle Scholar
  3. 3.
    Bol D, Flandre D, Legat JD (2009) Technology flavor selection and adaptive techniques for timing-constrained 45 nm subthreshold circuits. In: Proceedings of the ACM/IEEE international symposium on low power electronics and design (ISLPED), pp 21–26Google Scholar
  4. 4.
    Bol D, Hocquet C, Flandre D, Legat JD (2010) The detrimental impact of negative celsius temperature on ultra-low-voltage CMOS logic. In: Proceedings of the IEEE European solid-state circuits conference (ESSCIRC), pp 522–525. DOI:  10.1109/ESSCIRC.2010.5619758
  5. 5.
    Bol D, De Vos J, Hocquet C, Botman F, Durvaux F, Boyd S, Flandre D, Legat JD (2013) Sleepwalker: A 25-MHz 0.4-V sub-mm2 7-μW/MHz microcontroller in 65-nm LP/GP CMOS for low-carbon wireless sensor nodes. IEEE J Solid State Circuits 48(1):20–32. DOI:  10.1109/JSSC.2012.2218067 CrossRefGoogle Scholar
  6. 6.
    Bryant A, Brown J, Cottrell P, Ketchen M, Ellis-Monaghan J, Nowak E (2001) Low-power CMOS at Vdd = 4kT/q. In: Proceedings of the IEEE device research conference (DRC), pp 22–23. DOI:  10.1109/DRC.2001.937856
  7. 7.
    Calhoun B, Chandrakasan A (2006) Ultra-dynamic voltage scaling (UDVS) using sub-threshold operation and local voltage dithering. IEEE J Solid State Circuits 41(1):238–245. DOI:  10.1109/JSSC.2005.859886 CrossRefGoogle Scholar
  8. 8.
    Calhoun B, Khanna S, Mann R, Wang J (2009) Sub-threshold circuit design with shrinking CMOS devices. In: Proceedings of the IEEE international symposium on circuits and systems (ISCAS), pp 2541–2544. DOI:  10.1109/ISCAS.2009.5118319
  9. 9.
    Cheng Y, Chan M, Hui K, Jeng MC, Liu Z, Huang J, Chen K, Chen J, Tu R, Ko PK, Hu C (1996) BSIM3v3 manual. Department of Electrical Engineering and Computer Sciences, University of California, BerkeleyGoogle Scholar
  10. 10.
    Hanson S, Seok M, Sylvester D, Blaauw D (2008) Nanometer device scaling in subthreshold logic and SRAM. IEEE Trans Electron Devices 55(1):175–185. DOI:  10.1109/TED.2007.911033 CrossRefGoogle Scholar
  11. 11.
    Hwang ME (2011) Supply-voltage scaling close to the fundamental limit under process variations in nanometer technologies. IEEE Trans Electron Devices 58(8):2808–2813. DOI:  10.1109/TED.2011.2151257 CrossRefGoogle Scholar
  12. 12.
    Jeon D, Seok M, Chakrabarti C, Blaauw D, Sylvester D (2012) A super-pipelined energy efficient subthreshold 240 MS/s FFT core in 65 nm CMOS. IEEE J Solid State Circuits 47(1):23–34. DOI:  10.1109/JSSC.2011.2169311 CrossRefGoogle Scholar
  13. 13.
    Kao J, Miyazaki M, Chandrakasan A (2002) A 175-mV multiply-accumulate unit using an adaptive supply voltage and body bias architecture. IEEE J Solid State Circuits 37(11):1545–1554. DOI:  10.1109/JSSC.2002.803957 CrossRefGoogle Scholar
  14. 14.
    Kaul H, Anders M, Mathew S, Hsu S, Agarwal A, Krishnamurthy R, Borkar S (2008) A 320mV 56μW 411GOPS/Watt ultra-low voltage motion estimation accelerator in 65 nm CMOS. In: Proceedings of the IEEE international solid-state circuits conference (ISSCC), pp 316–317. DOI:  10.1109/ISSCC.2008.4523184
  15. 15.
    Kim C, Soeleman H, Roy K (2003) Ultra-low-power DLMS adaptive filter for hearing aid applications. IEEE Trans Very Large Scale Integr VLSI Syst 11(6):1058–1067. DOI:  10.1109/TVLSI.2003.819573 CrossRefGoogle Scholar
  16. 16.
    Kim JJ, Roy K (2004) Double gate-MOSFET subthreshold circuit for ultralow power applications. IEEE Trans Electron Devices 51(9):1468–1474. DOI:  10.1109/TED.2004.833965 CrossRefGoogle Scholar
  17. 17.
    Konijnenburg M, Cho Y, Ashouei M, Gemmeke T, Kim C, Hulzink J, Stuyt J, Jung M, Huisken J, Ryu S, Kim J, de Groot H (2013) Reliable and energy-efficient 1MHz 0.4V dynamically reconfigurable SoC for ExG applications in 40nm LP CMOS. In: Proceedings of the IEEE international solid-state circuits conference (ISSCC), pp 430–431. DOI:  10.1109/ISSCC.2013.6487801
  18. 18.
    Kumar R, Kursun V (2007) Temperature-adaptive energy reduction for ultra-low power-supply-voltage subthreshold logic circuits. In: Proceedings of the IEEE international conference on electronics, circuits and systems (ICECS), pp 1280–1283. DOI:  10.1109/ICECS.2007.4511231
  19. 19.
    Kwong J, Chandrakasan A (2006) Variation-driven device sizing for minimum energy sub-threshold circuits. In: Proceedings of the ACM/IEEE international symposium on low power electronics and design (ISLPED), pp 8–13. DOI:  10.1109/LPE.2006.4271799
  20. 20.
    Lutkemeier S, Jungeblut T, Berge H, Aunet S, Porrmann M, Ruckert U (2013) A 65nm 32b subthreshold processor with 9T multi-Vt SRAM and adaptive supply voltage control. IEEE J Solid State Circuits 48(1):8–19. DOI:  10.1109/JSSC.2012.2220671 CrossRefGoogle Scholar
  21. 21.
    Narendra S, Chandrakasan A (2006) Leakage in nanometer CMOS technologies. Springer, HeidelbergGoogle Scholar
  22. 22.
    Niiyama T, Piao Z, Ishida K, Murakata M, Takamiya M, Sakurai T (2008) Increasing minimum operating voltage (VDDmin) with number of CMOS logic gates and experimental verification with up to 1Mega-stage ring oscillators. In: Proceedings of the ACM/IEEE international symposium on low power electronics and design (ISLPED), pp 117–122. DOI:  10.1145/1393921.1393952
  23. 23.
    Paul B, Raychowdhury A, Roy K (2005) Device optimization for digital subthreshold logic operation. IEEE Trans Electron Devices 52(2):237–247. DOI:  10.1109/TED.2004.842538 CrossRefGoogle Scholar
  24. 24.
    Pelgrom M, Duinmaijer ACJ, Welbers A (1989) Matching properties of MOS transistors. IEEE J Solid State Circuits 24(5):1433–1439. DOI:  10.1109/JSSC.1989.572629 CrossRefGoogle Scholar
  25. 25.
    Pu Y, Pineda de Gyvez J, Corporaal H, Ha Y (2010) An ultra-low-energy multi-standard JPEG co-processor in 65 nm CMOS with sub/near threshold supply voltage. IEEE J Solid State Circuits 45(3):668–680. DOI:  10.1109/JSSC.2009.2039684 CrossRefGoogle Scholar
  26. 26.
    Rabaey J, Chandrakasan A, Nikolic B (2003) Digital integrated circuits: a design perspective, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  27. 27.
    Razavi B (2001) Design of analog CMOS integrated circuits, 2nd edn. McGraw-Hill, BostonGoogle Scholar
  28. 28.
    Reynders N, Dehaene W (2014) A 210mV 5MHz variation-resilient near-threshold JPEG encoder in 40nm CMOS. In: Proceedings of the IEEE international solid-state circuits conference (ISSCC), pp 456–457Google Scholar
  29. 29.
    Reynders N, Dehaene W (2015) On the effect of technology scaling on variation-resilient sub-threshold circuits. Elsevier Solid State Electron 103:19–29CrossRefGoogle Scholar
  30. 30.
    Roy K, Mukhopadhyay S, Mahmoodi-Meimand H (2003) Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc IEEE 91(2):305–327. DOI:  10.1109/JPROC.2002.808156 CrossRefGoogle Scholar
  31. 31.
    Sansen W (2006) Analog design essentials. Springer, New YorkGoogle Scholar
  32. 32.
    Swanson R, Meindl J (1972) Ion-implanted complementary MOS transistors in low-voltage circuits. IEEE J Solid State Circuits 7(2):146–153.DOI:  10.1109/JSSC.1972.1050260 CrossRefGoogle Scholar
  33. 33.
    Tajalli A, Leblebici Y (2011) Design trade-offs in ultra-low-power digital nanoscale CMOS. IEEE Trans Circuits Syst Regul Pap 58(9):2189–2200. DOI:  10.1109/TCSI.2011.2112595 CrossRefMathSciNetGoogle Scholar
  34. 34.
    Tsividis Y, McAndrew C (2011) Operation and modeling of the MOS transistor, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  35. 35.
    Vitale S, Wyatt P, Checka N, Kedzierski J, Keast C (2010) FDSOI process technology for subthreshold-operation ultralow-power electronics. Proc IEEE 98(2):333–342. DOI:  10.1109/JPROC.2009.2034476 CrossRefGoogle Scholar
  36. 36.
    Wang A, Chandrakasan A (2005) A 180-mV subthreshold FFT processor using a minimum energy design methodology. IEEE J Solid State Circuits 40(1):310–319. DOI:  10.1109/JSSC.2004.837945 CrossRefGoogle Scholar
  37. 37.
    Wang A, Calhoun B, Chandrakasan A (2006) Sub-threshold design for ultra low-power systems. Springer, New YorkGoogle Scholar
  38. 38.
    Weste N, Harris D (2011) CMOS VLSI design: a circuits and systems perspective, 4th edn. Addison-Wesley, New YorkGoogle Scholar
  39. 39.
    Zhao W, Cao Y (2006) New generation of predictive technology model for sub-45nm design exploration. In: Proceedings of the IEEE international symposium on quality electronic design (ISQED), pp 585–590. DOI:  10.1109/ISQED.2006.91

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nele Reynders
    • 1
  • Wim Dehaene
    • 1
  1. 1.ESAT-MICAS, KU LeuvenHeverleeBelgium

Personalised recommendations