Advertisement

Introduction

  • Nele Reynders
  • Wim Dehaene
Chapter
  • 1.4k Downloads
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

In today’s society, portable electronic devices play a major role in everyday life. These portable systems demand an ever increasing energy-efficiency. Every year, a single system is expected to comprise more complexity while at the same time extending its autonomy. Many contradicting expectations are driving research toward more energy-efficient digital circuits. Since the evolution of the energy capacity of batteries only increases very slowly, energy-efficient circuits are key to reaching the ever increasing expectations of customers. Moreover, many new fields are emerging which have even more stringent requirements on energy-efficiency. Especially the medical world can greatly profit from today’s evolutions. For instance, cheap sensor nodes and networks which can autonomously perform signal processing algorithms while demonstrating long lifetimes are becoming more and more feasible. This sets the general context of this book, and will be further clarified in this chapter.

Keywords

Energy-efficient Circuits Advanced Nanometer Technologies Minimum-energy Point (MEP) Energy-delay Product (EDP) Weak Inversion Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Calhoun B, Chandrakasan A (2004) Characterizing and modeling minimum energy operation for subthreshold circuits. In: Proceedings of the ACM/IEEE international symposium on low power electronics and design (ISLPED), pp 90–95. DOI:  10.1109/LPE.2004.1349316
  2. 2.
    Dehaene W, Gielen G, Steyaert M, Danneels H, Desmedt V, De Roover C, Li Z, Verhelst M, Van Helleputte N, Radiom S, Walravens C, Pleysier L (2009) RFID, where are they? In: Proceedings of the IEEE European solid-state circuits conference (ESSCIRC), pp 36–43. DOI:  10.1109/ESSCIRC.2009.5325928 Google Scholar
  3. 3.
    Dennard RH, Gaensslen F, Yu HN, Rideout L, Bassous E, Leblanc AR (1974) Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J Solid-State Circuits SC-9(5):256–268CrossRefGoogle Scholar
  4. 4.
    Gonzalez R, Gordon B, Horowitz M (1997) Supply and threshold voltage scaling for low power CMOS. IEEE J Solid-State Circuits 32(8):1210–1216. DOI:  10.1109/4.604077 CrossRefGoogle Scholar
  5. 5.
    IEEE IEEE Xplore digital library. URL http://ieeexplore.ieee.org
  6. 6.
    Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38(8):114–117Google Scholar
  7. 7.
    Rabaey J, Chandrakasan A, Nikolic B (2003) Digital integrated circuits: a design perspective, 2nd edn. Prentice Hall, Upper Saddle River, New JerseyGoogle Scholar
  8. 8.
    Reynders N, Dehaene W (2011) A 190mV supply, 10MHz, 90nm CMOS, pipelined sub-threshold adder using variation-resilient circuit techniques. In: Proceedings of the IEEE Asian solid-state circuits conference (A-SSCC), pp 113–116, DOI:  10.1109/ASSCC.2011.6123617
  9. 9.
    Reynders N, Dehaene W (2012) Variation-resilient building blocks for ultra-low-energy sub-threshold design. IEEE Trans Circuits Syst–Part II: Express Briefs 59(12):898–902. DOI:  10.1109/TCSII.2012.2231022 CrossRefGoogle Scholar
  10. 10.
    Reynders N, Dehaene W (2012) Variation-resilient sub-threshold circuit solutions for ultra-low-power digital signal processors with 10MHz clock frequency. In: Proceedings of the IEEE European solid-state circuits conference (ESSCIRC), pp 474–477. DOI:  10.1109/ESSCIRC.2012.6341358
  11. 11.
    Reynders N, Dehaene W (2014) A 210mV 5MHz variation-resilient near-threshold JPEG encoder in 40nm CMOS. In: Proceedings of the IEEE international solid-state circuits conference (ISSCC), pp 456–457Google Scholar
  12. 12.
    Reynders N, Dehaene W (2015) On the effect of technology scaling on variation-resilient sub-threshold circuits. Elsevier Solid-State Electron 103:19–29CrossRefGoogle Scholar
  13. 13.
    Reynders N, Rooseleer B, Dehaene W (2014) Energy-efficient logic and SRAM design: A case study. In: Proceedings of the IEEE faible tension faible consommation conference (FTFC), pp 1–4. DOI:  10.1109/FTFC.2014.6828616
  14. 14.
    Soeleman H, Roy K (1999) Ultra-low power digital subthreshold logic circuits. In: Proceedings of the ACM/IEEE international symposium on low power electronics and design (ISLPED), pp 94–96Google Scholar
  15. 15.
    Stanford University VLSI Research Group CPU database. URL http://cpudb.stanford.edu/
  16. 16.
    Swanson R, Meindl J (1972) Ion-implanted complementary MOS transistors in low-voltage circuits. IEEE J Solid-State Circuits 7(2):146–153, DOI:  10.1109/JSSC.1972.1050260 CrossRefGoogle Scholar
  17. 17.
    Wang A, Chandrakasan A, Kosonocky S (2002) Optimal supply and threshold scaling for subthreshold CMOS circuits. In: Proceedings of the IEEE computer society annual symposium on VLSI (ISVLSI), pp 5–9. DOI:  10.1109/ISVLSI.2002.1016866
  18. 18.
    Wang A, Calhoun B, Chandrakasan A (2006) Sub-threshold design for ultra low-power systems. Springer, New YorkGoogle Scholar
  19. 19.
    Weste N, Harris D (2011) CMOS VLSI design: a circuits and systems perspective, 4th edn. Addison-Wesley, New YorkGoogle Scholar
  20. 20.
    Wikipedia Semiconductor device fabrication. URL http://en.wikipedia.org/wiki/Semiconductor_device_fabrication

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nele Reynders
    • 1
  • Wim Dehaene
    • 1
  1. 1.ESAT-MICAS, KU LeuvenHeverleeBelgium

Personalised recommendations