Arsenic Distribution and Mobilization: A Case Study of Three Districts of Uttar Pradesh and Bihar (India)

  • Manoj Kumar
  • Mukesh Kumar
  • Alok Kumar
  • Virendra Bahadur Singh
  • Senthil Kumar
  • AL. Ramanathan
  • Prosun Bhattacharya

Abstract

Tectonic evolution of Himalayas is related to high erosional potential and substantial sediment transport. Fluvial deposition of clastic material in the Middle Gangetic plain (MGP) is mainly governed by crustal deformation and climatic condition of Himalayas (Singh M, Singh IB, Müller G, Geomorphology 86:144–175, 2007). Seven large Asian rivers—Ganga, Indus, Brahmaputra, Yangtze, Huang He or Yellow River, Salween and Mekong—are fed by Himalayan glaciers which are supplying ~30 % of the global sediments to the ocean (Milliman JD, Meade RH, J Geol 9:1–19, 1983; Singh VB, Ramanathan AL, Pottakkal JG, Kumar M, J Asian Earth Sci 79:224–234, 2014, 2005). High flux of sediment transported from different terrain of Himalayas is product of geologically young rock formation (Singh VB, Ramanathan AL, Pottakkal JG, Kumar M, J Asian Earth Sci 79:224–234, 2014). It provides an opportunity to study the fluvial system and post-depositional changes in sediment water interaction depending on the degree of mobility of element under the altered environmental conditions. Arsenic (As) contamination of groundwater is a global problem. Understanding of As mobilization from sediments to As-contaminated aquifers is important for water quality management in areas of MGP of India.

References

  1. Acharyya SK Comment on Nickson et al (1999) Arsenic poisoning of Bangladesh groundwater. Nature 401:545Google Scholar
  2. Acharyya SK, Shah BA (2004) Risk of arsenic contamination in groundwater affecting Ganga Alluvial Plain, India? Environ Health Perspect 112:19–20CrossRefGoogle Scholar
  3. Acharyya SK, Shah BA (2005) Genesis of arsenic contamination of ground water in alluvial Gangetic aquifer in India. In: Bundschuh J, Bhattacharya P, Chandrasekharam D (eds) Natural arsenic in groundwater. Balkema/Taylor and Francis, Leiden/LondonGoogle Scholar
  4. Acharyya SK, Shah BA (2007) Arsenic contaminated groundwater from parts of Damodar fan delta and west of Bhagirathi River, West Bengal, India: influence of fluvial geomorphology and Quaternary morphostratigraphy. Environ Geol 52:489–501CrossRefGoogle Scholar
  5. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. APHA AWWA WEF, Washington, DCGoogle Scholar
  6. Appelo CAJ, Postma D (1994) Geochemistry, groundwater and pollution. Balkema, RotterdamGoogle Scholar
  7. Chakraborti D, Mukherjee SC, Pati S, Sengupta MK, Rahman MM, Chowdhury UK, Lodh D, Chanda CR, Chakraborti AK, Basu GK (2003) Arsenic groundwater contamination in middle Ganga Plain, Bihar, India: a future danger? Environ Health Perspect 111:1194–1201CrossRefGoogle Scholar
  8. Chauhan VS, Nickson RT, Divya C, Iyengar L, Nalini S (2009) Ground water geochemistry of Ballia district, Uttar Pradesh, India. Chemosphere 75:83–91CrossRefGoogle Scholar
  9. Chidambaram S, Prasanna MV, Karmegam U, Singaraja C, Pethaperumal S, Manivannan R, Anandhan P, Tirumalesh K (2011) Significance of pCO2 values in determining carbonate chemistry in groundwater of Pondicherry region. India Front Earth Sci 5(2):197–206CrossRefGoogle Scholar
  10. Deutsch WJ (1997) Groundwater geochemistry: fundamentals and applications to contamination. Lewis Publishers, Boca Raton/New YorkGoogle Scholar
  11. Kumar P, Kumar M, Ramanathan AL, Tsujimura M (2010a) Tracing the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain, India: a source identification perspective. Environ Geochem Health 32:129–146CrossRefGoogle Scholar
  12. Kumar M, Kumar P, Ramanathan AL, Bhattacharya P, Thunvik R, Singh UK, Tsujimura M, Sracek O (2010b) Arsenic enrichment in groundwater in the middle Gangetic Plain of Ghazipur District in Uttar Pradesh, India. J Geochem Explor 105:83–94CrossRefGoogle Scholar
  13. Kumar A, Ramanathan AL, Prabha S, Ranjan RK, Ranjan S, Singh G (2012) Metal speciation studies in the aquifer sediments of Semria Ojhapatti, Bhojpur District, Bihar. Environ Monit Assess 184:3027–3042CrossRefGoogle Scholar
  14. Milliman JD, Meade RH (1983) Worldwide delivery of river sediments to ocean. J Geol 9:1–19CrossRefGoogle Scholar
  15. Mukherjee A, Fryar AE (2008) Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India. Appl Geochem 23:863–894CrossRefGoogle Scholar
  16. Nickson RT, McArthur JM, Ravenscroft P, Burgess WB, Ahmed KM (2000) Mechanism of As poisoning of groundwater in Bangladesh and West Bengal. Appl Geochem 15:403–413CrossRefGoogle Scholar
  17. Ramanathan AL, Tripathi P, Kumar M, Kumar A, Kumar P, Kumar M, Bhattacharya P (2012) Arsenic in groundwaters of the central Gangetic plain regions of India. In: Ng JC (ed) Understanding the geological and medical interface of arsenic. Taylor & Francis Group, London. ISBN 978-0-415-63763-3Google Scholar
  18. Shah BA (2008) Role of Quaternary stratigraphy on arsenic contaminated groundwater from parts of Middle Ganga Plain, UP–Bihar, India. Environ Geol 53:1553–1561CrossRefGoogle Scholar
  19. Singh M, Sharma M, Tobschall HJ (2005) Weathering of the Ganga alluvial plain, northern India: implications from fluvial geochemistry of the Gomati River. Appl Geochem 20:1–21CrossRefGoogle Scholar
  20. Singh M, Singh IB, Müller G (2007) Sediment characteristics and transportation dynamics of the Ganga River. Geomorphology 86:144–175CrossRefGoogle Scholar
  21. Singh VB, Ramanathan AL, Pottakkal JG, Kumar M (2014) Seasonal variation of the solute and suspended sediment load in Gangotri glacier meltwater, central Himalaya, India. J Asian Earth Sci 79:224–234CrossRefGoogle Scholar
  22. Stricklan JDH, Parsonas TR (1968) A practical handbook of seawater analysis, Bulletin 167. Fisheries Research Board of Canada, OttawaGoogle Scholar
  23. WHO (1993) Guidelines for drinking water quality. Recommendation, vol 1–2. World Health Organization, GenevaGoogle Scholar

Copyright information

© Capital Publishing Company 2015

Authors and Affiliations

  • Manoj Kumar
    • 1
  • Mukesh Kumar
    • 1
  • Alok Kumar
    • 1
  • Virendra Bahadur Singh
    • 1
  • Senthil Kumar
    • 1
  • AL. Ramanathan
    • 1
  • Prosun Bhattacharya
    • 2
  1. 1.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.KTH-International Groundwater Arsenic Research Group, Department of Land and Water Resources EngineeringRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations