Skip to main content

Mathematical Aspects of Coagulation-Fragmentation Equations

  • Conference paper
Mathematics of Energy and Climate Change

Part of the book series: CIM Series in Mathematical Sciences ((CIMSMS,volume 2))

Abstract

We give an overview of the mathematical literature on the coagulation-like equations, from an analytic deterministic perspective. In Sect. 1 we present the coagulation type equations more commonly encountered in the scientific and mathematical literature and provide a brief historical overview of relevant works. In Sect. 2 we present results about existence and uniqueness of solutions in some of those systems, namely the discrete Smoluchowski and coagulation-fragmentation: we start by a brief description of the function spaces, and then review the results on existence of solutions with a brief description of the main ideas of the proofs. This part closes with the consideration of uniqueness results. In Sects. 3 and 4 we are concerned with several aspects of the solutions behaviour. We pay special attention to the long time convergence to equilibria, self-similar behaviour, and density conservation or lack thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notation is not very good since it suggests there can be at most a countable number of daughter particles (y k ): in fact, there is no a priori reason preventing the distribution to be continuous.

  2. 2.

    As it should, in a binary fragmentation…

  3. 3.

    In this work we shall use the notation \(x \wedge y =\min \{ x,y\}\) and xy = max{x, y} and analogously for the comparison of more than two numbers.

  4. 4.

    In other versions of this coagulation process of stochastic particles it is assumed the resulting particle is located at the centre of mass \(\frac{x_{i}m_{i}+x_{j}m_{j}} {m_{i}+m_{j}}\) [176], in still others coagulation can happen within a whole interval of distances between the particles and not only at the distance \(\varepsilon\) [104]

  5. 5.

    The precise technical condition used in [94], possibly not necessary, is that ρ satisfies the inequality

    $$\displaystyle{128\frac{K_{c}\rho } {L} + 2\left (\frac{32K_{c}\rho } {L} \right )^{2+ \frac{1+2\alpha } {\gamma +2(1-\alpha )} } <1.}$$
  6. 6.

    The value of the constant is irrelevant for the result since it can always be transformed into another value by a time rescaling. The choice we make simplifies the computations a bit.

  7. 7.

    There is an analogous behaviour of loss of mass in the pure fragmentation system, called “shattering” and interpreted as a loss of mass to infinitesimal clusters. We shall not consider this behaviour here, directing the interested reader to the literature, e.g., [7, 89, 152].

  8. 8.

    The Banach space Y 1 was defined in page 108.

References

  1. Aizenman, M., Bak, T.A.: Convergence to equilibrium in a system of reacting polymers. Commun. Math. Phys. 65, 203–230 (1979)

    MathSciNet  MATH  Google Scholar 

  2. Aldous, D.J.: Deterministic and stochastic models for coalescence (aggregation, coagulation): a review of mean-field theory for probabilists. Bernoulli 5, 3–48 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Amann, H.: Coagulation-fragmentation processes. Arch. Rat. Mech. Anal. 151, 339–366 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Amann, H., Walker, Ch.: Local and global strong solutions to continuous coagulation-fragmentation equations with diffusion. J. Differ. Equ. 218, 159–186 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Amann, H., Weber, F.: On a quasilinear coagulation-fragmentation model with diffusion. Adv. Math. Sci. Appl. 11, 227–263 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Arino, O., Rudnicki, R.: Phytoplankton dynamics. C. R. Biol. 327, 961–969 (2004)

    Google Scholar 

  7. Arlotti, L., Banasiak, J.: Perturbations of Positive Semigroups with Applications. Springer Monographs in Mathematics. Springer, London (2006)

    MATH  Google Scholar 

  8. Babovsky, H.: On the modeling of gelation rates by finite systems. Technisch Universität Ilmenau, Institut für Mathematik, Preprint No. M11/01 (2001)

    Google Scholar 

  9. Bagland, V., Laurençot, Ph.: Self-similar solutions to the Oort-Hulst-Safronov coagulation equation. SIAM J. Math. Anal. 39, 345–378 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Bales, G.S., Chrzan, D.C.: Dynamics of irreversible island growth during submonolayer epitaxy. Phys. Rev. B 50, 6057–6067 (1994)

    Google Scholar 

  11. Ball, J.M., Carr, J.: Asymptotic behaviour of solutions to the Becker-Döring equations for arbitrary initial data. Proc. R. Soc. Edinb. 108A, 109–116 (1988)

    MathSciNet  Google Scholar 

  12. Ball, J.M., Carr, J.: The discrete coagulation-fragmentation equations: existence, uniqueness, and density conservation. J. Stat. Phys. 61, 203–234 (1990)

    MathSciNet  MATH  Google Scholar 

  13. Ball, J.M., Carr, J., Penrose, O.: The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions. Commun. Math. Phys. 104, 657–692 (1986)

    MathSciNet  MATH  Google Scholar 

  14. Banasiak, J.: Transport processes with coagulation and strong fragmentation. Discrete Contin. Dyn. Syst. Ser. B 17(2), 445–472 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Baranger, C.: Collisions, coalescences et fragmentations des gouttelettes dans un spray: écriture précise des équations relatives au modèle TAB. Prepublications du Centre de Mathématiques et de Leurs Applications, No2001-21, Ecole Normale Supérieure de Cachan (2001)

    Google Scholar 

  16. Bartlet, M.C., Evans, J.W.: Exact island-size distributions in submonolayer deposition: influence of correlations between island size and separation. Phys. Rev. B 54, R17359–R17362 (1996)

    Google Scholar 

  17. Becker, R., Döring, W.: Kinetische Behandlung in übersättigten Dämpfern. Ann. Phys. (Leipzig) 24, 719–752 (1935)

    Google Scholar 

  18. Ben-Naim, E., Krapivsky, P.: Kinetics of aggregation-annihilation processes. Phys. Rev. E 52, 6066–6070 (1995)

    Google Scholar 

  19. Bénilan, Ph., Wrzosek, D.: On an infinite system of raction-diffusion equations. Adv. Math. Sci. Appl. 7, 349–364 (1997)

    Google Scholar 

  20. Berry, E.X.: A mathematical framework for cloud models. J. Atmos. Sci. 26, 109–111 (1969)

    Google Scholar 

  21. Bertoin, J.: Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics, vol. 102. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  22. Binder, K.: Theory for the dynamics of clusters, II. Critical diffusion in binary systems and the kinetics for phase separation. Phys. Rev. B 15, 4425–4447 (1977)

    Google Scholar 

  23. Blatz, P.J., Tobolsky, A.V.: Note on the kinetics of systems manifesting simultaneous polymerization-depolymerization phenomena. J. Phys. Chem. 49, 77–80 (1945)

    Google Scholar 

  24. Bonilla, L., Carpio, A., Neu, J.C., Wolfer, W.G.: Kinetics of helium bubble formation in nuclear materials. Physica D 222, 131–140 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Breschi, G., Fontelos, M.A.: Self-similar solutions of the second kind representing gelation in finite time for the Smoluchowski equation. Nonlinearity 27, 1709–1745 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Buffet, E., Pulé, J.: Gelation: the diagonal case revisited. Nonlinearity 2, 373–381 (1989)

    MathSciNet  MATH  Google Scholar 

  27. Buffet, E., Werner, R.F.: A counter-example in coagulation theory. J. Math. Phys. 32, 2276–2278 (1991)

    MathSciNet  MATH  Google Scholar 

  28. Burton, J.J.: Nucleation theory. In: Berne, B.J. (ed.) Statistical Mechanics, Part A: Equilibrium Techniques. Modern Theoretical Chemistry, vol. 5, pp. 195–234. Plenum Press, New York (1977)

    Google Scholar 

  29. Cañizo, J.A.: Asymptotic behaviour of solutions to the generalized Becker-Döring equations for general initial data. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461, 3731–3745 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Cañizo, J.A.: Convergence to equilibrium for the discrete coagulation-fragmentation equations with detailed balance. J. Stat. Phys. 129, 1–26 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Cañizo, J.A., Lods, B.: Exponential convergence to equilibrium for subcritical solutions of the Becker-Döring equations. J. Differ. Equ. 255, 905–950 (2013)

    MATH  Google Scholar 

  32. Cañizo, J.A., Mischler, A.: Regularity, local behaviour and partial uniqueness for self-similar profiles of Smoluchowski’s coagulation equation. Rev. Mat. Iberoam. 27(3), 803–839 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Cañizo, J.A., Mischler, A., Mouhot, C.: Rate of convergence to self-similarity for Smoluchowski’s coagulation equation with constant coefficients. SIAM J. Math. Anal. 41(6), 2283–2314 (2010)

    MATH  Google Scholar 

  34. Carr, J.: Asymptotic behaviour of solutions to the coagulation-fragmentation equations. I. The strong fragmentation case. Proc. R. Soc. Edinb. 121A, 231–244 (1992)

    MathSciNet  Google Scholar 

  35. Carr, J., da Costa, F.P.: Instantaneous gelation in coagulation dynamics. Z. Angew. Math. Phys. 43, 974–983 (1992)

    MathSciNet  MATH  Google Scholar 

  36. Carr, J., da Costa, F.P.: Asymptotic behavior of solutions to the coagulation-fragmentation equations. II. Weak fragmentation. J. Stat. Phys. 77, 89–123 (1994)

    MATH  Google Scholar 

  37. Carr, J., Dunwell, R.: Kinetics of cell surface capping. Appl. Math. Lett. 12, 45–49 (1999)

    MathSciNet  MATH  Google Scholar 

  38. Carr, J., Pego, R.L.: Very slow phase separation in one dimension. In: Rascle, M., Serre, D., Slemrod, M. (eds.) PDEs and Continuum Models of Phase Transitions. Proceedings of an NSF-CNRS Joint Seminar held in Nice, France, January 18–22, 1988. Lecture Notes in Physics, vol. 344, pp. 216–226. Springer, Berlin (1989)

    Google Scholar 

  39. Carr, J., Pego, R.L.: Self-similarity in a coarsening model in one dimension. Proc. R. Soc. Lond. A 436, 569–583 (1992)

    MathSciNet  Google Scholar 

  40. Carr, J., Pego, R.L.: Self-similarity in a cut-and-paste model of coarsening. Proc. R. Soc. Lond. A 456, 1281–1290 (2000)

    MathSciNet  MATH  Google Scholar 

  41. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1941)

    Google Scholar 

  42. Cheng, Z., Redner, S.: Scaling theory of fragmentation. Phys. Rev. Lett. 60, 2450–2453 (1988)

    Google Scholar 

  43. Collet, F.: Some modelling issues in the theory of fragmentation-coagulation systems. Commun. Math. Sci. 2(Suppl. 1), 35–54 (2004)

    MathSciNet  MATH  Google Scholar 

  44. da Costa, F.P.: Studies in coagulation-fragmentation equations. Ph.D. Thesis, Heriot-Watt University, Edinburgh (1993)

    Google Scholar 

  45. da Costa, F.P.: Existence and uniqueness of density conserving solutions to the coagulation-fragmentation equations with strong fragmentation. J. Math. Anal. Appl. 192, 892–914 (1995)

    MathSciNet  MATH  Google Scholar 

  46. da Costa, F.P.: On the positivity of solutions to the Smoluchowski equations. Mathematika 42, 406–412 (1995)

    MathSciNet  MATH  Google Scholar 

  47. da Costa, F.P.: On the dynamic scaling behaviour of solutions to the discrete Smoluchowski equation. Proc. Edinb. Math. Soc. 39, 547–559 (1996)

    MATH  Google Scholar 

  48. da Costa, F.P.: Asymptotic behaviour of low density solutions to the Generalized Becker-Döring equations. Nonlinear Differ. Equ. Appl. 5, 23–37 (1998)

    MATH  Google Scholar 

  49. da Costa, F.P.: A finite-dimensional dynamical model for gelation in coagulation processes. J. Nonlinear Sci. 8, 619–653 (1998)

    MathSciNet  MATH  Google Scholar 

  50. da Costa, F.P.: Convergence to equilibria of solutions to the coagulation-fragmentation equations. In: Li, T.-t., Lin, L.-w., Rodrigues, J.F. (eds.) Nonlinear Evolution Equations and Their Applications, pp. 45–56. Luso-Chinese Symposium, Macau, 7–9 Oct 1998. World Scientific, Singapore (1999)

    Google Scholar 

  51. da Costa, F.P.: Convergence to self-similarity in addition models with input of monomers. Oberwolfach Rep. 4(4), 2754–2756 (2007)

    Google Scholar 

  52. da Costa, F.P.: Dynamics of a differential system using invariant regions. L’Enseignement Math. 53, 3–14 (2007)

    MATH  Google Scholar 

  53. da Costa, F.P., Pinto, J.T.: A nonautonomous predator-prey system arising from coagulation theory. Int. J. Biomath. Biostat. 1(2), 129–140 (2010)

    MATH  Google Scholar 

  54. da Costa, F.P., Sasportes, R.: Dynamics of a nonautonomous ODE system occuring in coagulation theory. J. Dyn. Diff. Equ. 20, 55–85 (2008)

    MATH  Google Scholar 

  55. da Costa, F.P., Grinfeld, M., McLeod, J.B.: Unimodality of steady size distributions of growing cell populations. J. Evol. Equ. 1, 405–409 (2001)

    MathSciNet  MATH  Google Scholar 

  56. da Costa, F.P., Grinfeld, M., Wattis, J.A.D.: A hierarchical cluster system based on Horton-Strahler rules for river networks. Stud. Appl. Math. 109, 163–204 (2002)

    MathSciNet  MATH  Google Scholar 

  57. da Costa, F.P., van Roessel, H.J., Wattis, J.A.D.: Long-time behaviour and self-similarity in a coagulation equation with input of monomers. Markov Process. Relat. Fields 12, 367–398 (2006)

    MATH  Google Scholar 

  58. da Costa, F.P., Pinto, J.T., Sasportes, R.: Convergence to self-similarity in an addition model with power-like time-dependent input of monomers. In: Cutello, V., Fotia, G., Puccio, L. (eds.) Applied and Industrial Mathematics in Italy II, Selected Contributions from the 8th SIMAI Conference. Series on Advances in Mathematics for Applied Sciences, vol. 75, pp. 303–314. World Scientific, Singapore (2007)

    Google Scholar 

  59. da Costa, F.P., Pinto, J.T., Sasportes, R.: The Redner–Ben-Avraham–Kahng Cluster system. São Paulo J. Math. Sci. 6(2), 171–201 (2012)

    MATH  Google Scholar 

  60. da Costa, F.P., Pinto, J.T., van Roessel, H.J., Sasportes, R.: Scaling behaviour in a coagulation-annihilation model and Lotka-Volterra competition systems. J. Phys. A Math. Theor. 45, 285201 (2012)

    Google Scholar 

  61. da Costa, F.P., Pinto, J.T., Sasportes, R.: The Redner–Ben-Avraham–Kahng coagulation system with constant coefficients: the finite dimensional case. Z. Angew. Math. Phys. (13 August 2014, accepted for publication). arXiv:1401.3715v2

    Google Scholar 

  62. Costin, O., Grinfeld, M., O’Neill, K.P., Park, H.: Long-time behaviour of point islands under fixed rate deposition. Commun. Inf. Syst. 13(2), 183–200 (2013)

    MathSciNet  Google Scholar 

  63. Coutsias, E.A., Wester, M.J., Perelson, A.S.: A nucleation theory of cell surface capping, J. Stat. Phys. 87, 1179–1203 (1997)

    Google Scholar 

  64. Coveney, P.V., Wattis, J.A.D.: Becker-Döring model of self-reproducing vesicles. J. Chem. Soc. Faraday Trans. 92(2), 233–246 (1998)

    Google Scholar 

  65. Davidson, J.: Existence and uniqueness theorem for the Safronov-Dubovski coagulation equation, pp. 10. Z. Angew. Math. Phys. (31 August 2013, to appear). doi:10.1007/s00033-013-0360-y

  66. Deaconu, M., Fournier, N., Tanré, E.: A pure jump Markov process associated with Smoluchowski’s coagulation equation. Ann. Probab. 30, 1763–1796 (2002)

    MathSciNet  MATH  Google Scholar 

  67. Derrida, B., Godrèche, C., Yekutieli, I.: Scale-invariant regimes in one-dimensional models of growing and coalescing droplets. Phys. Rev. A 44, 6241–6251 (1991)

    Google Scholar 

  68. Desvillettes, L., Fellner, K.: Duality and entropy methods in coagulation-fragmentation models. Riv. Mat. Univ. Parma 4(2), 215–263 (2013)

    MathSciNet  MATH  Google Scholar 

  69. van Dongen, P.G.J.: On the possible occurrence of instantaneous gelation in Smoluchowski’s coagulation equation. J. Phys. A Math. Gen. 20, 1889–1904 (1987)

    Google Scholar 

  70. van Dongen, P.G.J., Ernst, M.H.: Scaling solutions of Smoluchowski’s coagulation equations. J. Stat. Phys. 50, 295–329 (1988)

    MATH  Google Scholar 

  71. van Dongen, P.G.J.: Spatial fluctuations in reaction-limited aggregation. J. Stat. Phys. 54, 221–271 (1989)

    Google Scholar 

  72. Drake, R.L.: A general mathematical survey of the coagulation equation. In: Hidy, G.M., Brock, J.R. (eds.) Topics in Current Aerosol Research (Part 2). International Reviews in Aerosol Physics and Chemistry, pp. 201–376. Pergamon Press, Oxford (1972)

    Google Scholar 

  73. Dreyer, W., Duderstadt, F.: On the Becker/Döring theory of nucleation of liquid droplets in solids. J. Stat. Phys. 123, 55–87 (2006)

    MATH  Google Scholar 

  74. Dubovskii, P.B.: Mathematical Theory of Coagulation. Lecture Notes Series, vol. 23. Research Institute of Mathematics/Global Analysis Research Center, Seoul National University, Seoul (1994)

    Google Scholar 

  75. Dubovski, P.B.: A ‘triangle’ of interconnected coagulation models. J. Phys. A Math. Gen. 32, 781–793 (1999)

    MathSciNet  MATH  Google Scholar 

  76. Ernst, M.H., Pagonabarraga, I.: The nonlinear fragmentation equation. J. Phys. A Math. Theor. 40, F331–F337 (2007)

    MathSciNet  MATH  Google Scholar 

  77. Ernst, M.H., Ziff, R.M., Hendriks, E.M.: Coagulation processes with a phase transition. J. Colloid Interface Sci. 97, 266–277 (1984)

    Google Scholar 

  78. Escobedo, M., Mischler, S., Perthame, B.: Gelation in coagulation and fragmentation models. Commun. Math. Phys. 231, 157–188 (2002)

    MathSciNet  MATH  Google Scholar 

  79. Escobedo, M., Laurençot, Ph., Mischler, S.: Fast reaction limit of the discrete diffusive coagulation-fragmentation equation. Commun. Partial Diff. Equ. 28, 1113–1133 (2003)

    MATH  Google Scholar 

  80. Escobedo, M., Laurençot, Ph., Mischler, S., Perthame, B.: Gelation and mass conservation in coagulation-fragmetation models. J. Differ. Equ. 195, 143–174 (2003)

    MATH  Google Scholar 

  81. Escobedo, M., Laurençot, Ph., Mischler, S.: On a kinetic equation for coalescing particles. Commun. Math. Phys. 246, 237–267 (2004)

    MATH  Google Scholar 

  82. Escobedo, M., Mischler, S., Rodriguez-Ricard, M.: On self-similarity and stationary problems for fragmentation and coagulation models. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 99–125 (2005)

    MathSciNet  MATH  Google Scholar 

  83. Family, F., Landau, D.P. (eds.): Kinetics of aggregation and gelation. In: Proceedings of the International Topical Conference on Kinetics of Aggregation and Gelation, Athens, Georgia, USA, 2–4 April 1984. North-Holland, Amesterdam (1984)

    Google Scholar 

  84. Fasano, A., Rosso, F.: Dynamics of droplets in an agitated dispersion with multiple breakage. Part I: formulation of the model and physical consistency. Math. Meth. Appl. Sci. 28, 631–659 (2005)

    MathSciNet  MATH  Google Scholar 

  85. Fasano, A., Rosso, F.: Dynamics of droplets in an agitated dispersion with multiple breakage. Part II: uniqueness and global existence. Math. Meth. Appl. Sci. 28, 1061–1088 (2005)

    MathSciNet  MATH  Google Scholar 

  86. Fasano, A., Rosso, F., Mancini, A.: Implementation of a fragmentation-coagulation-scattering model for the dynamics of stirred liquid-liquid dispersions. Physica D 222, 141–158 (2006)

    MathSciNet  MATH  Google Scholar 

  87. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. Wiley, New York (1971)

    Google Scholar 

  88. Filbet, F., Laurençot, P.: Numerical simulation of the Smoluchowski coagulation equation. SIAM J. Sci. Comput. 25, 2004–2028 (2004)

    MathSciNet  MATH  Google Scholar 

  89. Filippov, A.F.: On the distribution of the sizes of particles which undergo splitting. Theory Prob. Appl. 6, 275–294 (1961)

    Google Scholar 

  90. Fournier, N., Laurençot, Ph.: Existence of self-similar solutions to Smoluchowski’s coagulation equation. Commun. Math. Phys. 256, 589–609 (2005)

    MATH  Google Scholar 

  91. Fournier, N., Laurençot, Ph.: Local properties of self-similar solutions to Smoluchowski’s coagulation equation with sum kernels. Proc. R. Soc. Edinb. Sect. A 136, 485–508 (2006)

    MATH  Google Scholar 

  92. Fournier, N., Laurençot, Ph.: Markus-Lushnikov processes, Smoluchowski’s and Flory’s models. Stoch. Process. Appl. 119, 167–189 (2009)

    MATH  Google Scholar 

  93. Fournier, N., Mischler, S.: Exponential trend to equilibrium for discrete coagulation equations with strong fragmentation and without a balance condition. Proc. R. Soc. Lond. A 460, 2477–2486 (2004)

    MathSciNet  MATH  Google Scholar 

  94. Fournier, N., Mischler, S.: On a discrete Boltzmann-Smoluchowski equations with rates bounded in the velocity variables. Commun. Math. Sci. 2(Suppl. 1), 55–63 (2004)

    MathSciNet  MATH  Google Scholar 

  95. Fournier, N., Mischler, S.: A spatially homogeneous Boltzmann equation for elastic, inelastic and coalescence collisions. J. Math. Pure Appl. 84, 1173–1234 (2005)

    MathSciNet  MATH  Google Scholar 

  96. Friedlander, S.K.: Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics. Topics in Chemical Engineering, 2nd edn. Oxford University Press, New York (2000)

    Google Scholar 

  97. Friedman, A., Ross, D.S.: Mathematical Models in Photographic Science. Mathematics in Industry, vol. 3. Springer, Berlin (2003)

    Google Scholar 

  98. Fusco, G.: A geometry approach to the dynamics of \(u_{t} =\varepsilon ^{2}u_{xx} + f(x)\) for small \(\varepsilon\). In: Kirchgässner, K. (ed.) Problems Involving Change of Type. Proceedings of a Conference Held at the University of Stuttgart, FRG, October 11–14, 1988. Lecture Notes in Physics, vol. 359, pp. 53–73. Springer, Berlin (1990)

    Google Scholar 

  99. Gabrielov, A., Newman, W.I., Turcotte, D.L.: Exactly soluble hierarchical clustering model: inverse cascades, self-similarity, and scaling. Phys. Rev. E 60, 5293–5300 (1999)

    MathSciNet  Google Scholar 

  100. Gallay, T., Mielke, A.: Convergence results for a coarsening model using global linearization. J. Nonlinear Sci. 13, 311–346 (2003)

    MathSciNet  MATH  Google Scholar 

  101. Gibou, F., Ratsch, C., Caflisch, R.: Capture numbers in rate equations and scaling laws for epitaxial growth. Phys. Rev. B 67, 155403 (2003)

    Google Scholar 

  102. Greer, M.L., Pujo-Menjouet, L., Webb, G.F.: A mathematical analysis of the dynamics of prion proliferation. J. Theor. Biol. 242, 598–606 (2006)

    MathSciNet  Google Scholar 

  103. Grinfeld, M., Lamb, W., O’Neill, K.P., Mulheran, P.A.: Capture-zone distribution in one-dimensional sub-monolayer film growth: a fragmentation theory approach. J. Phys. A Math. Theor. 45, 015002 (2012)

    MathSciNet  Google Scholar 

  104. Großkinsky, S., Klingenberg, C., Oelschläger, K.: A rigorous derivation of Smoluchowski’s equation in the moderate limit. Stoch. Anal. Appl. 22, 113–141 (2004)

    MATH  Google Scholar 

  105. Guiaş, F.: Coagulation-fragmentation processes: relations between finite particle models and differential equations. PhD thesis, Ruprecht-Karls-Universität Heidelberg, SFB 359, Preprint 41/1998 (1998)

    Google Scholar 

  106. Hendriks, E.M., Ernst, M.H.: Critical properties for gelation: a kinetic approach. Phys. Rev. Lett. 49(8), 593–595 (1982)

    Google Scholar 

  107. Herrmann, M., Naldzhieva, M., Niethammer, B.: On a thermodynamically consistent modification of the Becker-Döring equations. Physica D 222, 116–130 (2006)

    MathSciNet  MATH  Google Scholar 

  108. Ispolatov, I., Krapivsky, P.L., Redner, S.: War: the dynamics of vicious civilizations. Phys. Rev. E 54, 1274–1289 (1996)

    Google Scholar 

  109. Jabin, P.-E., Niethammer, B.: On the rate of convergence to equilibrium in the Becker-Döring equations. J. Differ. Equ. 191(2), 518–543 (2003)

    MathSciNet  MATH  Google Scholar 

  110. Jeon, I.: Existence of gelling solutions for coagulation-fragmentation equations. Commun. Math. Phys. 194, 541–567 (1998)

    MathSciNet  MATH  Google Scholar 

  111. Ke, J., Wang, X., Lin, Z., Zhuang, Y.: Scaling in the aggregation process with catalysis-driven fragmentation. Physica A 338, 356–366 (2004)

    Google Scholar 

  112. Kolmogorov, A.N.: Über das logarithmisch normale Verteilungsgesetz der Dimensionen der Teilchen bei Zerstückelung. Dokl. Akad. Nauk SSSR 31, 99–101 (1941)

    Google Scholar 

  113. Kolmogorov, A.N., Fomin, S.V.: Introductory Real Analysis. Dover, New York (1975)

    Google Scholar 

  114. Kolokoltsov, V.N.: Hydrodynamic limit of coagulation-fragmentation type models of k-nary interacting particles. J. Stat. Phys. 115, 1621–1653 (2004)

    MathSciNet  MATH  Google Scholar 

  115. Krapivsky, P.: Nonuniversality and breakdown of scaling in two-species aggregation with annihilation. Physica A 198, 135–149 (1993)

    MathSciNet  Google Scholar 

  116. Kreer, M.: Cluster equations for the Glauber kinetic Ising ferromagnet: I. Existence and uniqueness. Ann. Physik 2, 720–737 (1993)

    MathSciNet  Google Scholar 

  117. Kreer, M., Penrose, O.: Proof of dynamic scaling in Smoluchowski’s coagulation equations with constant kernels. J. Stat. Phys. 74, 389–407 (1994)

    MathSciNet  Google Scholar 

  118. Krivitsky, D.: Numerical solution of the Smoluchowski kinetic equation and asymptotics of the distribution function. J. Phys. A Math. Gen. 28, 2025–2039 (1995)

    MathSciNet  MATH  Google Scholar 

  119. Kumar, J., Peglow, M., Warnecke, G., Heinrich, S.: An efficient numerical technique for solving population balance equation involving aggregation, breakage, growth and nucleation. Powder Technol. 182, 81–104 (2008)

    Google Scholar 

  120. Lachowicz, M., Laurençot, Ph., Wrzosek, D.: On the Oort-Hulst-Safronov coagulation equation and its relation to the Smoluchowski equation. SIAM J. Math. Anal. 34, 1399–1421 (2003)

    MathSciNet  MATH  Google Scholar 

  121. Lachowicz, M., Wrzosek, D.: A nonlocal coagulation-fragmentation model. Appl. Math. (Warsaw) 27, 45–66 (2000)

    Google Scholar 

  122. Laurençot, Ph.: Uniforme integrabilite et théorème de de la Vallée Poussin, pp. 8 (unpublished note, not dated)

    Google Scholar 

  123. Laurençot, Ph.: Global solutions to the discrete coagulation equations. Mathematika 46, 433–442 (1999)

    MathSciNet  MATH  Google Scholar 

  124. Laurençot, Ph.: Singular behaviour of finite approximations to the addition model. Nonlinearity 12, 229–239 (1999)

    MathSciNet  MATH  Google Scholar 

  125. Laurençot, Ph.: On a class of continuous coagulation-fragmentation equations. J. Differ. Equ. 167, 245–274 (2000)

    MATH  Google Scholar 

  126. Laurençot, Ph.: The discrete coagulation equations with multiple fragmentation. Proc. Edinb. Math. Soc. 45, 67–82 (2002)

    MathSciNet  MATH  Google Scholar 

  127. Laurençot, Ph.: Convergence to self-similar solutions for a coagulation equation. Z. Angew. Math. Phys. 56, 398–411 (2005)

    MathSciNet  MATH  Google Scholar 

  128. Laurençot, Ph.: Self-similar solutions to a coagulation equation with multiplicative kernel. Physica D 222, 80–87 (2006)

    MathSciNet  MATH  Google Scholar 

  129. Laurençot, Ph., Mischler, S.: The continuous coagulation-fragmentation equations with diffusion. Arch. Rational Mech. Anal. 162, 45–99 (2002)

    MATH  Google Scholar 

  130. Laurençot, Ph., Mischler, S.: From the Becker-Döring to the Lifshitz-Slyozov-Wagner equations. J. Stat. Phys. 106, 957–991 (2002)

    MATH  Google Scholar 

  131. Laurençot, Ph., Mischler, S.: From the discrete to the continuous coagulation-fragmentation equations. Proc. R. Soc. Edinb. 132A, 1219–1248 (2002)

    Google Scholar 

  132. Laurençot, Ph., Mischler, S.: Global existence for the discrete diffusive coagulation-fragmentation equations in L 1. Rev. Mat. Iberoam. 18, 731–745 (2002)

    MATH  Google Scholar 

  133. Laurençot, Ph., Mischler, S.: On coalescence equations and related models. In: Degond, P., Pareschi, L., Russo, G. (eds.) Modelling and Computational Methods for Kinetic Equations, pp. 321–356. Birkhäuser, Boston (2004)

    Google Scholar 

  134. Laurençot, Ph., Mischler, S.: Liapunov functional for Smoluchovski’s coagulation equation and convergence to self-similarity. Monat. Math. 146, 127–142 (2005)

    MATH  Google Scholar 

  135. Laurençot, P., van Roessel, H.: Nonuniversal self-similarity in a coagulation-annihilation model with constant kernels. J. Phys. A Math. Theor. 43, 455210 (2010)

    Google Scholar 

  136. Laurençot, Ph., Walker, Ch.: Well-posedness for a model of prion proliferation dynamics. J. Evol. Equ. 7, 241–264 (2006)

    Google Scholar 

  137. Laurençot, Ph., Wrzosek, D.: The Becker-Döring model with diffusion. I. Basic properties of solutions. Colloq. Math. 75, 245–269 (1998)

    MATH  Google Scholar 

  138. Laurençot, Ph., Wrzosek, D.: The Becker-Döring model with diffusion. II. Long time behaviour. J. Differ. Equ. 148, 268–291 (1998)

    MATH  Google Scholar 

  139. Laurençot, Ph., Wrzosek, D.: The discrete coagulation equation with collisional breakage. J. Stat. Phys. 104, 193–253 (2001)

    MATH  Google Scholar 

  140. Lê Châu-Hoàn, Etude de la classe des opérateurs m-accrétifs de L 1(Ω) et accrétifs dans L (Ω). Thèse de troisième cycle, Université de Paris VI, Paris (1977)

    Google Scholar 

  141. Lécot, C., Wagner, W.: A quasi-Monte Carlo scheme for Smoluchowski’s coagulation equation. Math. Comput. 73, 1953–1966 (2004)

    MATH  Google Scholar 

  142. Lee, M.H.: A survey of numerical solutions to the coagulation equation. J. Phys. A Math. Gen. 34, 10219–10241 (2001)

    MATH  Google Scholar 

  143. Levin, L., Sedunov, Yu.S.: A kinetic equation describing microphysical processes in clouds. Dokl. Akad. Nauk SSSR 170, 4–7 (1966)

    Google Scholar 

  144. Leyvraz, F.: Existence and properties of pos-gel solutions for the kinetic equations of coagulation. J. Phys. A Math. Gen. 18, 321–326 (1985)

    MathSciNet  Google Scholar 

  145. Leyvraz, F.: Scaling theory and exactly solved models in the kinetics of irreversible aggregation. Phys. Rep. 383, 95–212 (2003)

    Google Scholar 

  146. Leyvraz, F.: Rigorous results in the scaling theory of irreversible aggregation kinetics. J. Nonlinear Math. Phys. 12(Suppl. 1), 449–465 (2005)

    MathSciNet  Google Scholar 

  147. Leyvraz, F.: Scaling theory for gelling systems: work in progress. Physica D 222, 21–28 (2006)

    MathSciNet  MATH  Google Scholar 

  148. Leyvraz, F., Tschudi, H.R.: Singularities in the kinetics of coagulation processes. J. Phys. A Math. Gen. 14, 3389–3405 (1981)

    MathSciNet  MATH  Google Scholar 

  149. Lifshitz, I.M., Slyozov, V.V.: The kinetics of precipitationfrom supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961)

    Google Scholar 

  150. Lushnikov, A.A.: Evolution of coagulating systems: II. Asymptotic size distributions and analytical properties of generating functions. J. Coll. Interf. Sci. 48, 400–409 (1974)

    Google Scholar 

  151. Matsoukas, T., Friedlander, S.K.: Dynamics of aerosol agglomerate formation. J. Coll. Interf. Sci. 146, 495–506 (1991)

    Google Scholar 

  152. McGrady, E.D., Ziff, R.M.: “Shattering” transition in fragmentation. Phys. Rev. Lett. 58, 892–895 (1987)

    MathSciNet  Google Scholar 

  153. McLaughlin, D.J., Lamb, W., McBride, A.C.: A semigroup approach to fragmentation models. SIAM J. Math. Anal. 28, 1158–1172 (1997)

    MathSciNet  MATH  Google Scholar 

  154. McLeod, J.B.: On an infinite set of non-linear differential equations. Q. J. Math. Oxford (2) 13, 119–128 (1962)

    Google Scholar 

  155. McLeod, J.B.: On an infinite set of non-linear differential equations (II). Q. J. Math. Oxford (2) 13, 193–205 (1962)

    Google Scholar 

  156. McLeod, J.B.: On a recurrence formula in differential equations. Q. J. Math. Oxford (2) 13, 283–284 (1962)

    Google Scholar 

  157. McLeod, J.B., Niethammer, B., Velázquez, J.J.L.: Asymptotics of self-similar solutions to coagulation equations with product kernel. J. Stat. Phys. 144, 76–100 (2011)

    MathSciNet  MATH  Google Scholar 

  158. Melzak, Z.A.: A scalar transport equation. Trans. Am. Math. Soc. 85, 547–560 (1957)

    MathSciNet  MATH  Google Scholar 

  159. Menon, G., Pego, R.L.: Approach to self-similarity in Smoluchowski’s coagulation equations. Commun. Pure Appl. Math. 57, 1197–1232 (2004)

    MathSciNet  MATH  Google Scholar 

  160. Menon, G., Pego, R.L.: Dynamical scaling in Smoluchowski’s coagulation equations: uniform convergence. SIAM J. Math. Anal. 36, 1629–1651 (2005)

    MathSciNet  MATH  Google Scholar 

  161. Menon, G., Pego, R.L.: The scaling attractor and ultimate dynamics for Smoluchowski’s coagulation equations. J. Nonlinear Sci. 18, 143–190 (2008)

    MathSciNet  MATH  Google Scholar 

  162. Menon, G., Niethammer, B., Pego, R.L.: Dynamics and self-similarity in min-driven clustering. Trans. Am. Math. Soc. 362, 6591–6618 (2010)

    MathSciNet  MATH  Google Scholar 

  163. Morgenstern, D.: Analytical studies related to the Maxwell-Boltzmann equation. J. Ration. Mech. Anal. 4, 533–555 (1955)

    MathSciNet  MATH  Google Scholar 

  164. Müller, H.: Zur allgemeinen Theorie der raschen Koagulation. Kolloidchemische Beihefte 27, 223–250 (1928)

    Google Scholar 

  165. Nagai, T., Kawasaki, K.: Statistical dynamics of interactiong kinks II. Physica A 134(3), 483–521 (1986)

    Google Scholar 

  166. Niethammer, B.: On the evolution of large clusters in the Becker-Döring model. J. Nonlinear Sci. 13, 115–155 (2003)

    MathSciNet  MATH  Google Scholar 

  167. Niethammer, B.: A scaling limit of the Becker-Döring equations in the regime of small excess density. J. Nonlinear Sci. 14, 453–468 (2004)

    MathSciNet  MATH  Google Scholar 

  168. Niethammer, B.: Macroscopic limits of the Becker-Döring equations. Commun. Math. Sci. 2(Suppl. 1), 85–92 (2004)

    MathSciNet  MATH  Google Scholar 

  169. Niethammer, B., Velázquez, J.J.L.: Self-similar solutions with fat tails for a coagulation equation with diagonal kernel. C.R. Acad. Sci. Paris Ser. I 349, 559–562 (2011)

    MATH  Google Scholar 

  170. Niethammer, B., Velázquez, J.J.L.: Optimal bounds for self-similar solutions to coagulation equations with product kernel (11 February 2011). arXiv:1010.1857v2

    Google Scholar 

  171. Niethammer, B., Velázquez, J.J.L.: Self-similar solutions with fat tails for Smoluchowski’s coagulation equations with locally bounded kernels. Commun. Math. Phys. 318(2), 505–532 (2013) (erratum: same volume 533–534)

    Google Scholar 

  172. Niethammer, B., Velázquez, J.J.L.: Uniqueness of self-similar solutions to Smoluchowski’s coagulation equations for kernels that are close to constant (18 September 2013). arXiv:1309.4621v1

    Google Scholar 

  173. Niethammer, B., Velázquez, J.J.L.: Exponential tail behaviour of self-similar solutions to Smoluchowski’s coagulation equation (17 October 2013). arXiv:1310.4732v1

    Google Scholar 

  174. Niwa, H.-S.: School size statistics of fish. J. Theor. Biol. 195, 351–361 (1998)

    Google Scholar 

  175. Norris, J.R.: Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent. Ann. Appl. Prob. 9, 78–109 (1999)

    MathSciNet  MATH  Google Scholar 

  176. Norris, J.R.: Notes on Brownian coagulation. Markov Process. Relat. Fields 12, 407–412 (2006)

    MathSciNet  MATH  Google Scholar 

  177. Oort, J.H., van de Hulst, H.C.: Gas and smoke in interstellar space. Bull. Astron. Inst. Neth. 10, 187–204 (1946)

    Google Scholar 

  178. Oshanin, G.S., Burlatsky, S.F.: Fluctuation-induced kinetics of reversible coagulation. J. Phys. A Math. Gen. 22, L973–L976 (1989)

    Google Scholar 

  179. Pego, R.L.: Lectures on dynamics in models of coarsening and coagulation. In: Bao, W., Liu, J.-G. (eds.) Dynamics in Models of Coarsening, Coagulation, Condensation and Quantization. Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, vol. 9, pp. 1–61. World Scientific, Singapore (2007)

    Google Scholar 

  180. Penrose, O.: Metastable states for the Becker-Döring cluster equations. Commun. Math. Phys. 124, 515–541 (1989)

    MathSciNet  MATH  Google Scholar 

  181. Penrose, O.: The Becker-Döring equations at large times and their connection with the LSW theory of coarsening. J. Stat. Phys. 89, 305–320 (1997)

    MathSciNet  MATH  Google Scholar 

  182. Penrose, O., Lebowitz, J.L.: Towards a rigorous molecular theory of metastability. In: Montroll, E.W., Lebowitz, J.L. (eds.) Studies in Statistical Mechanics VII: Fluctuation Phenomena, pp. 321–375. North-Holland, Amesterdam (1987)

    Google Scholar 

  183. Penrose, O., Lebowitz, J.L., Marro, J., Kalos, M.H., Sur, A.: Growth of clusters in a first-order phase transition. J. Stat. Phys. 19(3), 243–267 (1978)

    Google Scholar 

  184. Perthame, B.: Transport Equations in Biology. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2007)

    MATH  Google Scholar 

  185. Pesz, K., Rodgers, G.J.: Kinetics of growing and coalescing droplets. J. Phys. A Math. Gen. 25, 705–713 (1992)

    Google Scholar 

  186. Piskunov, V.N., Petrov, A.M.: Condensation/coagulation kinetics for mixture of liquid and solid particles: analytical solutions. Aerosol Sci. 33, 647–657 (2002)

    Google Scholar 

  187. Pöschel, T., Brilliantov, N.V., Frömmel, C.: Kinetics of prion growth. Biophys. J. 85, 3460–3474 (2003)

    Google Scholar 

  188. Pruppacher, H.R., Klett, J.D.: Microphysics of Clouds and Precipitation. Atmospheric and Oceanographic Sciences Library, vol. 18, 2nd edn. Kluwer, Dordrecht (1997)

    Google Scholar 

  189. Ranjbar, M., Adibi, H., Lakestani, M.: Numerical solution of homogeneous Smoluchowski’s coagulation equation. Int. J. Comput. Math. 87(9), 2113–2122 (2010)

    MathSciNet  MATH  Google Scholar 

  190. Rao, M.M., Ren, Z.D.. Theory of Orlicz Spaces. Pure and Applied Mathematics, vol. 146. Marcel Dekker, New York (1991)

    Google Scholar 

  191. Redner, S., Ben-Avraham, D., Kahng, B.: Kinetics of ‘cluster eating’. J. Phys. A Math. Gen. 20, 1231–1238 (1987)

    Google Scholar 

  192. Rezakhanlou, F.: The coagulating brownian particles and Smoluchowski’s equation. Markov Process. Relat. Fields 12, 425–445 (2006)

    MathSciNet  MATH  Google Scholar 

  193. Roquejoffre, J.-M., Villedieu, Ph.: A kinetic model for droplet coalescence in dense sprays. Math. Meth. Models Appl. Sci. 11, 867–882 (2001)

    MathSciNet  MATH  Google Scholar 

  194. Safronov, V.: Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets. Israel Program for Scientific Translations, Jerusalem (1972)

    Google Scholar 

  195. Sasportes, R.: Long time behaviour and self similarity in an addition model with slow input of monomers. In: Bourguignon, J.P. (eds.) Mathematics of Energy and Climate Change. International Conference and Advanced School Planet Earth, Portugal, March 21-28, 2013. Springer, Heidelberg (2015)

    Google Scholar 

  196. Scott, W.T.: Analytic studies of cloud droplet coalescence I. J. Atmos. Sci. 25, 54–65 (1968)

    Google Scholar 

  197. Simha, R.: Kinetics of degradation and size distribution of long chain polymers. J. Appl. Phys. 12, 569–578 (1941)

    Google Scholar 

  198. Simonett, G., Walker, Ch.: On the solvability of a mathematical model for prion proliferation. J. Math. Anal. Appl. 234, 580–603 (2006)

    MathSciNet  Google Scholar 

  199. Slemrod, M.: Coagulation-diffusion systems: derivation and existence of solutions for the diffuse interface structure equations. Physica D 46, 351–366 (1990)

    MathSciNet  MATH  Google Scholar 

  200. Slemrod, M.: A note on the kinetic equations of coagulation. J. Integr. Equ. Appl. 3, 167–173 (1991)

    MathSciNet  MATH  Google Scholar 

  201. Slemrod, M.: Metastable fluid flow described via a discrete-velocity coagulation-fragmentation model. J. Stat. Phys. 83, 1067–1108 (1996)

    MathSciNet  MATH  Google Scholar 

  202. Slemrod, M.: The Becker-Döring equation. In: Bellomo, N., Pulvirenti, M. (eds.) Modelling in Applied Sciences, A Kinetic Theory Approach; Modelling and Simulation in Science, Engineering and Technology, pp. 149–171. Birkhäuser, Boston (2000)

    Google Scholar 

  203. Slemrod, M., Qi, A., Grinfeld, M., Stewart, I.: A discrete velocity coagulation-fragmentation model. Math. Meth. Appl. Sci. 18, 959–993 (1995)

    MathSciNet  MATH  Google Scholar 

  204. von Smoluchowski, M.: Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Physik. Zeitschr. 17,557–571, 587–599 (1916)

    Google Scholar 

  205. von Smoluchowski, M.: Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Zeitschrift f. physik. Chemie 92, 129–168 (1917)

    Google Scholar 

  206. Spouge, J.: An existence theorem for the discrete coagulation-fragmentation equations. Math. Proc. Camb. Phil. Soc. 96, 351–357 (1984)

    MathSciNet  MATH  Google Scholar 

  207. Srinivasan, R.: Rates of convergence for Smoluchowski’s coagulation equation. SIAM J. Math. Anal. 43(4), 1835–1854 (2011)

    MathSciNet  MATH  Google Scholar 

  208. Srivastava, R.C.: Parametrization of raindrop size distributions. J. Atmos. Sci. 35, 108–117 (1978)

    Google Scholar 

  209. Srivastava, R.C., A simple model of particle coalescence and breakup. J. Atmos. Sci. 39, 1317–1322 (1982)

    Google Scholar 

  210. Stewart, I.W.: A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels. Math. Meth. Appl. Sci. 11, 627–648 (1989)

    MATH  Google Scholar 

  211. Stewart, I.W.: A uniqueness theorem for the coagulation-fragmentation equation. Math. Proc. Camb. Phil. Soc. 107, 573–578 (1990)

    MATH  Google Scholar 

  212. Straube, R., Falcke, M.: Reversible clustering under the influence of a periodically modulated biding rate. Phys. Rev. E 76, 010402(R) (2007)

    Google Scholar 

  213. Vigil, R.D., Vermeersch, I., Fox, R.O.: Destructive aggregation: aggregation with collision-induced breakage. J. Colloid Interf. Sci. 302, 149–158 (2006)

    Google Scholar 

  214. Wagner, C.: Theorie der alterung von niederschlägen durch umlösen. Z. Electrochemie 65, 581–594 (1961)

    Google Scholar 

  215. Walker, Ch.: Coalescence and breakage processes. Math. Meth. Appl. Sci. 25, 729–748 (2002)

    MATH  Google Scholar 

  216. Walker, Ch.: Prion proliferation with unbounded polymerizaton rates. Electr. J. Differ. Equ. 15, 387–397 (2007)

    Google Scholar 

  217. Wang, C., Friedlander, S.K.: The self-preserving particle size distribution for coagulation by Brownian motion. J. Coll. Interf. Sci. 22, 126–132 (1966)

    Google Scholar 

  218. Wattis, J.A.D.: Similarity solutions of a Becker-Döring system with time-dependent monomer input. J. Phys. A Math. Gen. 37, 7823–7841 (2004)

    MathSciNet  MATH  Google Scholar 

  219. Wattis, J.A.D.: An introduction to mathematical models of coagulation-fragmentation processes: a discrete deterministic mean-field approach. Physica D 222, 1–20 (2006)

    MathSciNet  MATH  Google Scholar 

  220. Wattis, J.A.D.: Exact solutions for cluster-growth kinetics with evolving size and shape profiles. J. Phys. A Math. Gen. 39, 7283–7298 (2006)

    MathSciNet  MATH  Google Scholar 

  221. Webb, G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York (1985)

    MATH  Google Scholar 

  222. Wilkins, D.: A geometrical interpretation of the coagulation equation. J. Phys. A Math. Gen. 15, 1175–1178 (1982)

    MathSciNet  Google Scholar 

  223. White, W.H.: A global existence theorem for Smoluchowski’s coagulation equations. Proc. Am. Math. Soc. 80, 273–276 (1980)

    MATH  Google Scholar 

  224. Wrzosek, D.: Existence and uniqueness for the discrete coagulation-fragmentation model with diffusion. Topol. Meth. Nonlin. Anal. 9, 279–296 (1997)

    MathSciNet  MATH  Google Scholar 

  225. Wrzosek, D.: Mass-conserving solutions to the discrete coagulation-fragmentation with diffusion. Nonlinear Anal. 49, 297–314 (2002)

    MathSciNet  MATH  Google Scholar 

  226. Yıldırım, A., Koçak, H.: Series solution of the Smoluchowski’s coagulation equation. J. King Saud Univ. - Science 23(2), 183–189 (2011)

    Google Scholar 

  227. Ziff, R.M., McGrady, E.D.: Kinetics of polymer degradation. Macromolecules 19, 2513–2519 (1986)

    Google Scholar 

  228. Ziff, R.M., Stell, G.: Kinetics of polymer gelation. J. Chem. Phys. 73(7), 3492–3499 (1980)

    Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. Conceição Carvalho for the invitation to give an overview talk about the mathematics of coagulation equations at the thematic session on Non-Equilibrium Statistical Mechanics: Kinetics, Chemistry and Coagulation she organized as part of the International Conference on Mathematics of Energy and Climate Change, held in Lisbon, Portugal, in March 2013 and organized by CIM-Centro Internacional de Matemática.

I am also grateful to CIM president, Prof. Alberto Pinto, who enthusiastically supported my suggestion of writing this chapter by updating and translating into English an unpublished document I wrote in Portuguese a few years ago, and was very understanding in accepting the somewhat oversized result.

This work was partially supported by FCT under Strategic Project - LA 9 - 2013–2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. P. da Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

da Costa, F.P. (2015). Mathematical Aspects of Coagulation-Fragmentation Equations. In: Bourguignon, JP., Jeltsch, R., Pinto, A., Viana, M. (eds) Mathematics of Energy and Climate Change. CIM Series in Mathematical Sciences, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-16121-1_5

Download citation

Publish with us

Policies and ethics