Minimum H-Decompositions of Graphs and Its Ramsey Version: A Survey

Conference paper
Part of the CIM Series in Mathematical Sciences book series (CIMSMS, volume 1)


The subject of H-decompositions of graphs was first introduced by Erdős, Goodman and Pósa in 1966. Given graphs G and H, an H-decomposition of G is a partition of the edge set of G, such that, each part is either a single edge or forms a graph isomorphic to H. Let ϕ(n, H) be the smallest number ϕ, such that, any graph G with n vertices admits an H-decomposition with at most ϕ parts. The exact computation of ϕ(n, H) for an arbitrary H is still an open problem. In this paper we will survey recent results about H-decompositions of graphs and we will also introduce its Ramsey or coloured version together with recent results on this problem.


Ramsey Version Survey Recent Results Pikhurko Ramsey Numbers Clique Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the project UID/MAT/00297/2013 (Centro de Matemática e Aplicações).


  1. 1.
    Allen, P., Böttcher, J., Person, Y.: An improved error term for minimum H-decompositions of graphs. J. Combin.Theory Ser. B 109, 120–133 (2014)Google Scholar
  2. 2.
    Bollobás, B.: On complete subgraphs of different orders. Math. Proc. Camb. Philos. Soc. 79(1), 19–24 (1976)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bollobás, B.: Modern Graph Theory. Graduate Texts in Mathematics, vol. 184. Springer, New York (1998). doi: 10.1007/978-1-4612-0619-4.
  4. 4.
    Dor, D., Tarsi, M.: Graph decomposition is NP-complete: a complete proof of Holyer’s conjecture. SIAM J. Comput. 26(4), 1166–1187 (1997). doi: 10.1137/S0097539792229507.
  5. 5.
    Erdős, P., Goodman, A.W., Pósa, L.: The representation of a graph by set intersections. Can. J. Math. 18, 106–112 (1966)CrossRefGoogle Scholar
  6. 6.
    Erdős, P., Füredi, Z., Gould, R.J., Gunderson, D.S.: Extremal graphs for intersecting triangles. J. Combin. Theory Ser. B 64(1), 89–100 (1995). doi:10.1006/jctb.1995.1026.
  7. 7.
    Greenwood, R.E., Gleason, A.M.: Combinatorial relations and chromatic graphs. Can. J. Math. 7, 1–7 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Győri, E.: On the number of edge-disjoint triangles in graphs of given size. In: Combinatorics (Eger, 1987), Colloque Mathematical Society János Bolyai, vol. 52, pp. 267–276. North-Holland, Amsterdam (1988)Google Scholar
  9. 9.
    Győri, E.: On the number of edge disjoint cliques in graphs of given size. Combinatorica 11(3), 231–243 (1991). doi:10.1007/BF01205075.
  10. 10.
    Haxell, P.E., Rödl, V.: Integer and fractional packings in dense graphs. Combinatorica 21(1), 13–38 (2001). doi:10.1007/s004930170003.
  11. 11.
    Kalbfleisch, J.G., Stanton, R.G.: On the maximal triangle-free edge-chromatic graphs in three colors. J. Combin. Theory 5, 9–20 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kövari, T., Sós, V.T., Turán, P.: On a problem of K. Zarankiewicz. Colloq. Math. 3, 50–57 (1954)zbMATHGoogle Scholar
  13. 13.
    Krivelevich, M.: On a conjecture of Tuza about packing and covering of triangles. Discrete Math. 142(1–3), 281–286 (1995). doi:10.1016/0012-365X(93)00228-W.
  14. 14.
    Liu, H., Sousa, T.: Fan decompositions of graphs (Submitted)Google Scholar
  15. 15.
    Liu, H., Sousa, T.: Monochromatic K r-decompositions of graphs. J. Graph Theory 76, 92–101 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Liu, H., Pikhurko, O., Sousa, T.: Monochromatic clique decompositions of graphs. J. Graph Theory (to appear)Google Scholar
  17. 17.
    Özkahya, L., Person, Y.: Minimum H-decompositions of graphs: edge-critical case. J. Combin. Theory Ser. B 102(3), 715–725 (2012). doi:10.1016/j.jctb.2011.10.004.
  18. 18.
    Pikhurko, O., Sousa, T.: Minimum H-decompositions of graphs. J. Combin. Theory Ser. B 97(6), 1041–1055 (2007). doi:10.1016/j.jctb.2007.03.002.
  19. 19.
    Pippenger, N., Spencer, J.: Asymptotic behavior of the chromatic index for hypergraphs. J. Combin. Theory Ser. A 51(1), 24–42 (1989)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Radziszowski, S.P.: Small Ramsey numbers. Electron. J. Combin. DS01, Research Paper ds1, 27 (1996)Google Scholar
  21. 21.
    Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. 30, 264–286 (1930)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sousa, T.: Decompositions of graphs into 5-cycles and other small graphs. Electron. J. Combin. 12, Research Paper 49, 7 pp. (electronic) (2005).
  23. 23.
    Sousa, T.: Decompositions of graphs into a given clique-extension. Ars Combin. 100, 465–472 (2011)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Sousa, T.: 4-Cycle decompositions of graphs. Open J. Discret. Math. 2, 125–130 (2012)CrossRefGoogle Scholar
  25. 25.
    Sousa, T.: Decompositions of graphs into cycles of length seven and single edges. Ars Combin. (to appear)Google Scholar
  26. 26.
    Szemerédi, E.: Regular partitions of graphs. In: Problèmes combinatoires et théorie des graphes (Colloq. International CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, vol. 260, pp. 399–401. CNRS, Paris (1978)Google Scholar
  27. 27.
    Turán, P.: On an extremal problem in graph theory. Mat. Fiz. Lapok 48, 436–452 (1941)MathSciNetGoogle Scholar
  28. 28.
    Tuza, Zs.: Finite and infinite sets. In: Colloquia Mathematica Societatis János Bolyai, vol. 37, p. 888. North-Holland Publishing Co., Amsterdam (1984)Google Scholar
  29. 29.
    Yuster, R.: Dense graphs with a large triangle cover have a large triangle packing. Combin. Probab. Comput. 21, 952–962 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Departamento de Matemática and Centro de Matemática e Aplicações, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations