Skip to main content

On the Fundamental Bifurcation Theorem for Semelparous Leslie Models

  • Conference paper
Dynamics, Games and Science

Part of the book series: CIM Series in Mathematical Sciences ((CIMSMS,volume 1))

Abstract

This brief survey of nonlinear Leslie models focuses on the fundamental bifurcation that occurs when the extinction equilibrium destabilizes as R 0 increases through 1. Of particular interest is the bifurcation that occurs when only the oldest age class is reproductive, in which case the Leslie projection matrix is not primitive. This case is distinguished by the invariance of the boundary of the positive cone on which orbits contain temporally synchronized, missing age classes and by the bifurcation of oscillatory attractors, lying on the boundary of the positive cone, in addition to the bifurcation of positive equilibria. The lack of primitivity of the Leslie projection matrix, while seemingly only a mathematically technicality, corresponds to a fundamental life history strategy in population dynamics, namely, semelparity (when individuals have one reproductive event before dying). The study of semelparous Leslie models was historically motivated by the synchronized outbreak cycles of periodical insects, the most famous being the long-lived cicadas (C. magicicada spp).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This corrects an error in Theorem 4.1 of [10].

  2. 2.

    To apply Theorem 1.20 in [56] we extend the domain of the \(\sigma _{i}\left (x\right )\) to R m by re-defining them smoothly outside of the closure \(\bar{R}_{+}^{m}\) of the positive cone. This is possible by assumption A1.

References

  1. Allen, L.J.S.: A density-dependent Leslie matrix model. Math. Biosci. 96(2), 179–187 (1989)

    Article  Google Scholar 

  2. Behncke, H.: Periodical cicadas. J. Math. Biol. 40, 423–431 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bulmer, M.G.: Periodical insects. Am. Nat. 111, 1099–1117 (1977)

    Article  Google Scholar 

  4. Caswell, H.: Matrix Population Models: Construction, Analysis and Interpretation, 2nd edn. Sinauer Associates, Inc., Sunderland, MA (2001)

    Google Scholar 

  5. Costantino, R.F., Desharnais, R.A., Cushing, J.M., Dennis, B.: Chaotic dynamics in an insect population. Science 275, 389–391 (1997)

    Article  MATH  Google Scholar 

  6. Costantino, R.F., Desharnais, R.A., Cushing, J.M., Dennis, B., Henson, S.M., King, A.A.: The flour beetle Tribolium as an effective tool of discovery. Adv. Ecol. Res. 37, 101–141 (2005)

    Article  Google Scholar 

  7. Courchamp, F., Berec, L., Gascoigne, J.: Allee Effects in Ecology and Conservation. Oxford University Press, Oxford (2008)

    Book  Google Scholar 

  8. Cushing, J.M.: An Introduction to Structured Population Dynamics. Conference Series in Applied Mathematics, vol. 71. SIAM, Philadelphia (1998)

    Google Scholar 

  9. Cushing, J.M.: Cycle chains and the LPA model. J. Differ. Equ. Appl. 9, 655–670 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cushing, J.M.: Nonlinear semelparous Leslie models. Math. Biosci. Eng. 3(1), 17–36 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cushing, J.M.: Matrix models and population dynamics. In: Mark Lewis, A.J.C., James, P.K., Philip, K.M. (eds.) Mathematical Biology. IAS/Park City Mathematics Series, vol. 14, pp. 47–150. American Mathematical Society, Providence (2009)

    Google Scholar 

  12. Cushing, J.M.: Three stage semelparous Leslie models. J. Math. Biol. 59, 75–104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cushing, J.M.: A bifurcation theorem for Darwinian matrix models. Nonlinear Stud. 17(1), 1–13 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Cushing, J.M.: On the dynamics of a class of Darwinian matrix models. Nonlinear Dyn. Syst. Theory 10(2), 103–116 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Cushing, J.M.: On the relationship between r and R 0 and its role in the bifurcation of equilibria of Darwinian matrix models. J. Biol. Dyn. 5, 277–297 (2011)

    Article  MathSciNet  Google Scholar 

  16. Cushing, J.M.: A dynamic dichotomy for a system of hierarchical difference equations. J. Differ. Equ. Appl. 18(1), 1–26 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cushing, J.M.: Backward bifurcations and strong Allee effects in matrix models for the dynamics of structured populations. J. Biol. Dyn. 8, 57–73 (2014)

    Article  MathSciNet  Google Scholar 

  18. Cushing, J.M., Henson, S.M.: Stable bifurcations in semelparous Leslie models. J. Biol. Dyn. 6, 80–102 (2012)

    Article  MathSciNet  Google Scholar 

  19. Cushing, J.M., Li, J.: On Ebenman’s model for the dynamics of a population with competing juveniles and adults. Bull. Math. Biol. 51, 687–713 (1989)

    Article  MATH  Google Scholar 

  20. Cushing, J.M., Li, J.: Juvenile versus adult competition. J. Math. Biol. 29, 457–473 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cushing, J.M., Li, J.: Intra-specific competition and density dependent juvenile growth. Bull. Math. Biol. 53(4), 503–519 (1992)

    Article  Google Scholar 

  22. Cushing, J.M., Maccracken-Stump, S.: Darwinian dynamics of a juvenile-adult model. Math. Biosci. Eng. 10(4), 1017–1044 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cushing, J.M., Zhou, Y.: The net reproductive value and stability in structured population models. Nat. Resour. Model. 8(4), 1–37 (1994)

    Google Scholar 

  24. Cushing, J.M., Costantino, R.F., Dennis, B., Desharnais, R.A., Henson, S.M.: Chaos in Ecology: Experimental Nonlinear Dynamics. Theoretical Ecology Series, vol. 1. Academic Press (Elsevier Science), New York (2003). ISBN: 0-12-1988767

    Google Scholar 

  25. Davydova, N.V.: Old and young. Can they coexist? Ph.D. dissertation, Facultaeit der Wiskunde en Informatica, Universiteit Utrecht, Utrecht (2004)

    Google Scholar 

  26. Davydova, N.V., Diekmann, O., van Gils, S.A.: Year class coexistence or competitive exclusion for strict biennials? J. Math. Biol. 46, 95–131 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Davydova, N.V., Diekmann, O., van Gils, S.A.: On circulant populations. I. The algebra of semelparity. Linear Algebra Appl. 398, 185–243 (2005)

    Article  MATH  Google Scholar 

  28. Dennis, B., Desharnais, R.A., Cushing, J.M., Henson, S.M., Costantino, R.F.: Estimating chaos and complex dynamics in an insect population. Ecol. Monogr. 71(2), 277–303 (2001)

    Article  MathSciNet  Google Scholar 

  29. Diekmann, O., van Gils, S.A.: Invariance and symmetry in a year-class model. In: Buescu, J., Castro, S.D., da Silva Dias, A.P., Labouriau, I.S. (eds.) Trends in Mathematics: Bifurcations, Symmetry and Patterns, pp. 141–150. Birkhäuser Verlag, Basel (2003)

    Chapter  Google Scholar 

  30. Diekmann, O., van Gils, S.A.: On the cyclic replicator equations and the dynamics of semelparous populations. SIAM J. Appl. Dyn. Syst. 8(3), 1160–1189 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Diekmann, O., Davydova, N., van Gils, S.: On a boom and bust year class cycle. J. Differ. Equ. Appl. 11(4), 327–335 (2005)

    Article  MATH  Google Scholar 

  32. Ebenman, B.: Niche differences between age classes and intraspecific competition in age-structured populations. J. Theor. Biol. 124, 25–33 (1987)

    Article  MathSciNet  Google Scholar 

  33. Ebenman, B.: Competition between age classes and population dynamics. J. Theor. Biol. 131, 389–400 (1988)

    Article  MathSciNet  Google Scholar 

  34. Elaydi, S.N.: An Introduction to Difference Equations. Springer, New York (1996)

    Book  MATH  Google Scholar 

  35. Henson, S.M., Cushing, J.M., Costantino, R.F., Dennis, B., Desharnais, R.A.: Phase switching in biological population. Proc. R. Soc. Lond. B 265, 2229–2234 (1998)

    Article  Google Scholar 

  36. Impagliazzo, J.: Deterministic Aspects of Mathematical Demography. Biomathematics, vol. 13. Springer, Berlin (1980)

    Google Scholar 

  37. Jang, S.R.-J., Cushing, J.M.: A discrete hierarchical model of intra-specific competition. J. Math. Anal. Appl. 280, 102–122 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jang, S.R.-J., Cushing, J.M.: Dynamics of hierarchical models in discrete-time. J. Differ. Equ. Appl. 11(2), 95–115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Karban, R.: Opposite density effects of nymphal and adult mortality for periodical cicadas. Ecology 65, 1656–1661 (1984)

    Article  Google Scholar 

  40. Kielhöfer, H.: Bifurcation Theory: An Introduction with Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 156. Springer, Berlin (2011)

    Google Scholar 

  41. King, A.A., Costantino, R.F., Cushing, J.M., Henson, S.M., Desharnais, R.A., Dennis, B.: Anatomy of a chaotic attractor: subtle model predicted patterns revealed in population data. Proc. Natl. Acad. Sci. 101(1), 408–413 (2003)

    Article  Google Scholar 

  42. Kon, R.: Nonexistence of synchronous orbits and class coexistence in matrix population models. SIAM J. Appl. Math. 66(2), 626–636 (2005)

    Article  MathSciNet  Google Scholar 

  43. Kon, R.: Competitive exclusion between year-classes in a semelparous biennial population. In: Deutsch, A., Bravo de la Parra, R., de Boer, R., Diekmann, O., Jagers, P., Kisdi, E., Kretzschmar, M., Lansky, P., Metz, H. (eds.) Mathematical Modeling of Biological Systems. vol. II, pp. 79–90. Birkhäuser, Boston (2007)

    Google Scholar 

  44. Kon, R.: Permanence induced by life-cycle resonances: the periodical cicada problem. J. Biol. Dyn. 6(2), 855–890 (2012)

    Article  MathSciNet  Google Scholar 

  45. Kon, R., Iwasa, Y.: Single-class orbits in nonlinear Leslie matrix models for semelparous populations. J. Math. Biol. 55, 781–802 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kon, R., Saito, Y., Takeuchi, Y.: Permanence of single-species stage-structured models. J. Math. Biol. 48, 515–528 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Leslie, P.H.: On the use of matrices in certain population mathematics. Biometrika 33, 183–212 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  48. Leslie. P.H.: Some further notes on the use of matrices in population mathematics. Biometrika 35, 213–245 (1948)

    Google Scholar 

  49. Leslie, P.H., Gower, J.C.: The properties of a stochastic model for two competing species. Biometrika 45, 316–330 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  50. Levin, S.A., Goodyear, C.P.: Analysis of an age-structured fishery model. J. Math. Biol. 9, 245–274 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  51. Li, C.-K., Schneider, H.: Applications of Perron-Frobenius theory to population dynamics. J. Math. Biol. 44, 450–462 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  52. May, R.M.: Periodical cicadas. Nature 277, 347–349 (1979)

    Article  Google Scholar 

  53. Mjϕlhus, E., Wikan, A., Solberg, T.: On synchronization in semelparous populations. J. Math. Biol. 50, 1–21 (2005)

    Google Scholar 

  54. Neubert, M.G., Caswell, H.: Density-dependent vital rates and their population dynamic consequences. J. Math. Biol. 41, 103–121 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  55. Nisbet, R.M., Onyiah, L.C.: Population dynamic consequences of competition within and between age classes. J. Math. Biol. 32, 329–344 (1994)

    Article  MATH  Google Scholar 

  56. Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  57. Ricker, W.E.: Stock and Recruitment. J. Fish. Res. Board Can. 11(5), 559–623 (1954)

    Article  Google Scholar 

  58. Robertson, S.L., Cushing, J.M.: Spatial segregation in stage-structured populations with an application to Tribolium. J. Biol. Dyn. 5(5), 398–409 (2011)

    Google Scholar 

  59. Robertson, S.L., Cushing, J.M.: A bifurcation analysis of stage-structured density dependent integrodifference equations. J. Math. Anal. Appl. 388, 490–499 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  60. Roff, D.A.: The Evolution of Life Histories: Theory and Analysis. Chapman and Hall, New York (1992)

    Google Scholar 

  61. Silva, J.A.L., Hallam, T.G.: Compensation and stability in nonlinear matrix models. Math. Biosci. 110, 67–101 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  62. Smith, H.L.: Planar competitive and cooperative difference equations. J. Differ. Equ. Appl. 3, 335–357 (1998)

    Article  MATH  Google Scholar 

  63. Stearns, S.C.: The Evolution of Life Histories. Oxford University Press, Oxford, UK (1992)

    Google Scholar 

  64. Tschumy W.O.: Competition between juveniles and adults in age-structured populations. Theor. Popul. Biol. 21, 255–268 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  65. Wikan, A.: Dynamic consequences of reproductive delay in Leslie matrix models with nonlinear survival probabilities. Math. Biosci. 146, 37–62 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  66. Wikan, A.: Four-periodicity in Leslie matrix models with density dependent survival probabilities. Theor. Popul. Biol. 53, 85–97 (1998)

    Article  MATH  Google Scholar 

  67. Wikan, A.: Age or stage structure? Bull. Math. Biol. 74, 1354–1378 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  68. Wikan, A., Mjϕlhus, E.: Overcompensatory recruitment and generation delay in discrete age-structured population models. J. Math. Biol. 35, 195–239 (1996)

    Google Scholar 

  69. Williams, K.S., Smith, K.G., Stephen F.M.: Emergence of 13-yr periodical cicadas (Cicadidae: magicicada): phenology, mortality, and predator satiation. Ecology 74(4), 1143–1152 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

The author was partially supported by NSF grant DMS 0917435.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Cushing .

Editor information

Editors and Affiliations

Appendix

Appendix

Theorem 1.20 in [56] implies the existence of two, globally distinct continua \(\mathcal{C}_{+}^{e}\) and \(\mathcal{C}_{-}^{e}\) of nonzero equilibrium pairs each of which satisfies the two alternatives, i.e. is unbounded in \(R^{1} \times R^{m}\) or contains a point \(\left (\lambda,0\right )\) where λ ≠ 1 is a characteristic value of \(M\left (0\right )\).

Footnote 2 In a neighborhood of \(\left (1,0\right )\), \(\mathcal{C}_{+}^{e}\) and \(\mathcal{C}_{-}^{e}\) consist of positive and negative equilibrium pairs respectively. Since second alternative is ruled out by the fact that \(M\left (0\right )\) has no characteristic value other than 1, \(\mathcal{C}_{+}^{e}\) and \(\mathcal{C}_{-}^{e}\) are globally distinct distinct continua that are unbounded in \(R \times R^{m}\). For purposes of contradiction we assume the unbounded continuum \(C_{+}^{e}\), which in a neighborhood of \(\left (1,0\right )\) lies in \(R_{+}^{1} \times R_{+}^{m}\), does not remain in \(R_{+}^{1} \times R_{+}^{m}\). In this case, it must contain a point \(\left (R_{0}^{{\ast}},x^{{\ast}}\right ) \in \partial \left (R_{+} \times R_{+}^{m}\right )\) other than \(\left (1,0\right )\) and we can find a sequence of points \(\left (R_{0n},x_{n}\right ) \in \mathcal{C}_{+}^{e} \cap \left (R_{+} \times R_{+}^{m}\right )\) such that \(\lim _{n\rightarrow \infty }\left (R_{0n},x_{n}\right ) = \left (R_{0}^{{\ast}},x^{{\ast}}\right )\) where \(R_{0}^{{\ast}}\geq 0\) and \(x^{{\ast}}\in \bar{ R}_{+}^{m}\). We want to arrive at a contradiction.

The points \(\left (R_{0n},x_{n}\right )\) satisfy (12)

$$\displaystyle{ x_{n} = R_{0n}M\left (0\right )x_{n} + R_{0n}h\left (x_{n}\right ). }$$
(29)

First, suppose x ∗ = 0. We can extract a subsequence from the sequence of unit vectors

$$\displaystyle{ u_{n} = \frac{x_{n}} {\left \vert x_{n}\right \vert } \in R_{+}^{m} }$$

that converges to a nonnegative unit vector u: 

$$\displaystyle{ \lim _{n\rightarrow \infty }u_{n} = u \in \bar{ R}_{+} }$$

Passing to the limit in

$$\displaystyle{ \frac{x_{n}} {\left \vert x_{n}\right \vert } = R_{0n}M\left (0\right )\frac{x_{n}} {\left \vert x_{n}\right \vert } + R_{0n}\frac{h\left (x_{n}\right )} {\left \vert x_{n}\right \vert }. }$$

we obtain \(u = R_{0}^{{\ast}}M\left (0\right )u.\) This leads to an immediate contradiction if \(R_{0}^{{\ast}} = 0\). If \(R_{0}^{{\ast}}\neq 0\) then since the only characteristic value of \(M\left (0\right )\) is 1 we obtain another contradiction, namely, \(R_{0}^{{\ast}} = 1\). Having ruled out \(x^{{\ast}} = 0,\) we conclude that \(x^{{\ast}}\in \partial R_{+}^{m}\setminus \{0\}.\) Passing to the limit in Eq. (29) we conclude that x ∗ is an equilibrium of the nonlinear Leslie model (with \(R_{0} = R_{0}^{{\ast}}\)). However, an inspection of components of the equilibrium equation (10) shows that if one component equals 0 then all components equal 0, i.e. x ∗ = 0. This is a contradiction to \(x^{{\ast}}\in \partial R_{+}^{m}\setminus \{0\}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cushing, J.M. (2015). On the Fundamental Bifurcation Theorem for Semelparous Leslie Models. In: Bourguignon, JP., Jeltsch, R., Pinto, A., Viana, M. (eds) Dynamics, Games and Science. CIM Series in Mathematical Sciences, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-16118-1_12

Download citation

Publish with us

Policies and ethics