Advertisement

An Efficient Estimation of a Node’s Betweenness

  • Manas AgarwalEmail author
  • Rishi Ranjan Singh
  • Shubham Chaudhary
  • S. R. S. Iyengar
Part of the Studies in Computational Intelligence book series (SCI, volume 597)

Abstract

Betweenness Centrality measures, erstwhile popular amongst the sociologists and psychologists, have seen wide and increasing applications across several disciplines of late. In conjunction with the big data problems, there came the need to analyze large complex networks. Exact computation of a node’s betweenness is a daunting task in the networks of large size. In this paper, we propose a non-uniform sampling method to estimate the betweenness of a node. We apply our approach to estimate a node’s betweenness in several synthetic and real world graphs. We compare our method with the available techniques in the literature and show that our method fares several times better than the currently known techniques. We further show that the accuracy of our algorithm gets better with the increase in size and density of the network.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anthonisse, J.M.: The rush in a directed graph. Stichting Mathematisch Centrum. Mathematische Besliskunde (BN 9/71), 1–10 (1971)Google Scholar
  2. 2.
    Bader, D.A., Kintali, S., Madduri, K., Mihail, M.: Approximating betweenness centrality. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 124–137. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Batagelj, V., Mrvar, A.: Pajek datasets (2006), http://vlado.fmf.uni-lj.si/pub/networks/data
  5. 5.
    Brandes, U.: A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology 25(2), 163–177 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Brandes, U., Erlebach, T. (eds.): Network Analysis. LNCS, vol. 3418. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  7. 7.
    Brandes, U., Pich, C.: Centrality estimation in large networks. International Journal of Bifurcation and Chaos 17(07), 2303–2318 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., Zhang, J., Sun, S., Ling, L., Zhang, N., et al.: Topological structure analysis of the protein–protein interaction network in budding yeast. Nucleic Acids Research 31(9), 2443–2450 (2003)CrossRefGoogle Scholar
  9. 9.
    Chehreghani, M.H.: An efficient algorithm for approximate betweenness centrality computation. The Computer Journal, page bxu003 (2014)Google Scholar
  10. 10.
    Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Transactions on Mathematical Software (TOMS) 38(1), 1 (2011)MathSciNetGoogle Scholar
  11. 11.
    Erdos, P., Renyi, A.: On random graphs i. Publ. Math. Debrecen 6, 290–297 (1959)MathSciNetGoogle Scholar
  12. 12.
    Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)CrossRefGoogle Scholar
  13. 13.
    Geisberger, R., Sanders, P., Schultes, D.: Better Approximation of Betweenness Centrality, ch. 8, pp. 90–100 (2008)Google Scholar
  14. 14.
    Gkorou, D., Pouwelse, J., Epema, D., Kielmann, T., van Kreveld, M., Niessen, W.: Efficient approximate computation of betweenness centrality. In: 16th Annual Conf. of the Advanced School for Computing and Imaging, ASCI 2010 (2010)Google Scholar
  15. 15.
    Goel, K., Singh, R.R., Iyengar, S., Sukrit: A faster algorithm to update betweenness centrality after node alteration. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds.) WAW 2013. LNCS, vol. 8305, pp. 170–184. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Green, O., McColl, R., Bader, D.A.: A fast algorithm for streaming betweenness centrality. In: 2012 International Conference on Privacy, Security, Risk and Trust (PASSAT) and 2012 International Confernece on Social Computing (SocialCom), pp. 11–20 (September 2012)Google Scholar
  17. 17.
    Kas, M., Wachs, M., Carley, K.M., Carley, L.R.: Incremental algorithm for updating betweenness centrality in dynamically growing networks. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013, pp. 33–40. ACM, New York (2013)CrossRefGoogle Scholar
  18. 18.
    Kintali, S.: Betweenness centrality: Algorithms and lower bounds. arXiv preprint arXiv:0809.1906 (2008)Google Scholar
  19. 19.
    Knuth, D.E.: The Stanford GraphBase: a platform for combinatorial computing, vol. 37. Addison-Wesley, Reading (1993)Google Scholar
  20. 20.
    Lee, M.-J., Lee, J., Park, J.Y., Choi, R.H., Chung, C.-W.: Qube: A quick algorithm for updating betweenness centrality. In: Proceedings of the 21st International Conference on World Wide Web, WWW 2012, pp. 351–360. ACM, New York (2012)Google Scholar
  21. 21.
    Leskovec, J.: Stanford large network dataset collection (2010)Google Scholar
  22. 22.
    Nasre, M., Pontecorvi, M., Ramachandran, V.: Betweenness centality–incremental and faster. arXiv preprint arXiv:1311.2147 (2013)Google Scholar
  23. 23.
    Newman, M.: Networks: An Introduction. Oxford University Press, Inc., New York (2010)CrossRefGoogle Scholar
  24. 24.
    Riondato, M., Kornaropoulos, E.M.: Fast approximation of betweenness centrality through sampling. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, pp. 413–422. ACM (2014)Google Scholar
  25. 25.
    Sariyüce, A.E., Saule, E., Kaya, K., Çatalyürek, Ü.V.: Shattering and compressing networks for betweenness centrality. In: SIAM Data Mining Conference (SDM). SIAM (2013)Google Scholar
  26. 26.
    Taylor, P.J.: World city network: a global urban analysis. Psychology Press (2004)Google Scholar
  27. 27.
    Ulanowicz, R.E., DeAngelis, D.L.: Network analysis of trophic dynamics in south florida ecosystems. In: FY97: The Florida Bay Ecosystem, pp. 20688–20038 (1998)Google Scholar
  28. 28.
    Van Der Hofstad, R.: Random graphs and complex networks (2009), http://www.win.tue.nl/rhofstad/NotesRGCN.pdf
  29. 29.
    Wang, X.: Deciding on the type of the degree distribution of a graph (network) from traceroute-like measurements (2011)Google Scholar
  30. 30.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Manas Agarwal
    • 1
    Email author
  • Rishi Ranjan Singh
    • 2
  • Shubham Chaudhary
    • 1
  • S. R. S. Iyengar
    • 2
  1. 1.Department of MathematicsIndian Institute of TechnologyRoorkeeIndia
  2. 2.Department of Computer Science and EngineeringIndian Institute of TechnologyRoparIndia

Personalised recommendations