Related Work

  • Giovanni Livraga
Part of the Advances in Information Security book series (ADIS, volume 57)


This chapter illustrates research proposals related to this book, which are mainly devoted to the protection of data and user privacy and to the enforcement of access restrictions in data release scenarios. We will discuss recent proposals for private data publishing based on syntactic and semantic privacy definitions, as well as techniques exploiting data fragmentation and solutions for counteracting inferential disclosure of sensitive information. We will then illustrate available techniques for enforcing access control in outsourcing scenarios, with particular attention to the recently proposed strategy of selective encryption.


Access Structure Data Owner Access Control Policy Sensitive Attribute Differential Privacy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 3.
    G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R. Motwani, U. Srivastava, D. Thomas, Y. Xu, Two can keep a secret: a distributed architecture for secure database services, in Proceedings of CIDR 2005, Asilomar, CA, 2005Google Scholar
  2. 4.
    S. Akl, P. Taylor, Cryptographic solution to a problem of access control in a hierarchy. ACM TOCS 1(3), 239–248 (1983)CrossRefGoogle Scholar
  3. 5.
    M.J. Atallah, K.B. Frikken, M. Blanton, Dynamic and efficient key management for access hierarchies, in Proceedings of CCS 2005, Alexandria, VA, 2005Google Scholar
  4. 6.
    M. Atallah, M. Blanton, N. Fazio, K. Frikken, Dynamic and efficient key management for access hierarchies. ACM TISSEC 12(3), 18:1–18:43 (2009)Google Scholar
  5. 9.
    R.J. Bayardo, R. Agrawal, Data privacy through optimal k-anonymization, in Proceedings of ICDE’05, Tokyo, Japan, 2005Google Scholar
  6. 15.
    J. Biskup, M. Preuß, Database fragmentation with encryption: under which semantic constraints and a priori knowledge can two keep a secret? in Proceedigs of DBSec 2013, Newark, NJ, 2013Google Scholar
  7. 16.
    J. Biskup, M. Preuß, L. Wiese, On the inference-proofness of database fragmentation satisfying confidentiality constraints, in Proceedings of ISC 2011, Xi’an, 2011Google Scholar
  8. 18.
    A. Brodsky, C. Farkas, S. Jajodia, Secure databases: constraints, inference channels, and monitoring disclosures. IEEE TKDE 12(6), 900–919 (2000)Google Scholar
  9. 21.
    B.-C. Chen, R. Ramakrishnan, K. LeFevre, Privacy skyline: privacy with multidimensional adversarial knowledge, in Proceedings of the VLDB 2007, Vienna, 2007Google Scholar
  10. 23.
    V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, Fragmentation and encryption to enforce privacy in data storage, in Proceedings of ESORICS 2007, Dresden, 2007Google Scholar
  11. 24.
    V. Ciriani, S. De Capitani di Vimercati, S. Foresti, P. Samarati, k-anonymity, in Secure Data Management in Decentralized Systems, ed. by T. Yu, S. Jajodia (Springer, New York, 2007)Google Scholar
  12. 26.
    V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, Fragmentation design for efficient query execution over sensitive distributed databases, in Proceedings of ICDCS 2009, Montreal, Canada, 2009Google Scholar
  13. 27.
    V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, Keep a few: outsourcing data while maintaining confidentiality, in Proceedings of ESORICS 2009, Saint Malo, 2009Google Scholar
  14. 28.
    V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, Combining fragmentation and encryption to protect privacy in data storage. ACM TISSEC 13(3), 1–33 (2010)CrossRefGoogle Scholar
  15. 32.
    J. Crampton, K. Martin, P. Wild, On key assignment for hierarchical access control, in Proceedings of CSFW 2006, Venice, 2006Google Scholar
  16. 33.
    T. Dalenius, Towards a methodology for statistical disclosure control. Statistik Tidskrift 15, 429–444 (1977)Google Scholar
  17. 34.
    S. Dawson, S. De Capitani di Vimercati, P. Lincoln, P. Samarati, Minimal data upgrading to prevent inference and association attacks, in Proceedings of PODS 1999, Philadelphia, PA, 1999Google Scholar
  18. 36.
    S. Dawson, S. De Capitani di Vimercati, P. Samarati, Specification and enforcement of classification and inference constraints, in Proceedings of S&P 1999, Oakland, CA, 1999Google Scholar
  19. 37.
    S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati, Encryption policies for regulating access to outsourced data. ACM TODS 35(2), 12:1–12:46 (2010)Google Scholar
  20. 38.
    S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati, Fragments and loose associations: Respecting privacy in data publishing. PVLDB 3(1), 1370–1381 (2010)Google Scholar
  21. 39.
    S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, Support for write privileges on outsourced data. in Proceedings of SEC 2012, Heraklion, 2012Google Scholar
  22. 40.
    S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga, Enforcing subscription-based authorization policies in cloud scenarios, in Proceedings of DBSec 2012, Paris, 2012Google Scholar
  23. 46.
    A. De Santis, A.L. Ferrara, B. Masucci, Cryptographic key assignment schemes for any access control policy. IPL 92(4), 199–205 (2004)CrossRefzbMATHGoogle Scholar
  24. 47.
    H.S. Delugach, T.H. Hinke, Wizard: a database inference analysis and detection system. IEEE TKDE 8, 56–66 (1996)Google Scholar
  25. 50.
    C. Dwork, Differential privacy, in Proceedings of ICALP 2006, Venice, 2006Google Scholar
  26. 51.
    C. Dwork, A. Smith, Differential privacy for statistics: What we know and what we want to learn. JPC 1(2), 135–154 (2009)Google Scholar
  27. 52.
    C. Dwork, F. Mcsherry, K. Nissim, A. Smith, Calibrating noise to sensitivity in private data analysis, in Proceedings of TCC 2006, New York, 2006Google Scholar
  28. 53.
    C. Dwork, A. Nikolov, K. Talwar, Using convex relaxations for efficiently and privately releasing marginals. in Proceedings of SOCG 2014, Kyoto, 2014Google Scholar
  29. 55.
    Federal Committee on Statistical Methodology. Statistical policy working paper 22, May 1994. Report on Statistical Disclosure Limitation MethodologyGoogle Scholar
  30. 56.
    K.B. Frikken, Y. Zhang, Yet another privacy metric for publishing micro-data, in Proceedings of WPES 2008, Alexandria, 2008Google Scholar
  31. 58.
    J.A. Goguen, J. Meseguer, Unwinding and inference control, in Proceedings of S&P 1984, Oakland, 1984Google Scholar
  32. 59.
    P. Golle, Revisiting the uniqueness of simple demographics in the US population, in Proceedings of WPES 2006, Alexandria, 2006Google Scholar
  33. 60.
    V. Goyal, O. Pandey, A. Sahai, B. Waters, Attribute-based encryption for fine-grained access control of encrypted data, in Proceedings of CCS 2006, Alexandria, 2006Google Scholar
  34. 62.
    T. Hinke, Inference aggregation detection in database management systems. in Proceedings of S&P 1988, Oakland, 1988Google Scholar
  35. 63.
    T.H. Hinke, H.S. Delugach, A. Chandrasekhar, A fast algorithm for detecting second paths in database inference analysis. JCS 3(2/3), 147–168 (1995)Google Scholar
  36. 64.
    T.H. Hinke, H.S. Delugach, R. Wolf, A framework for inference-directed data mining, in Proceedings of DBSec 1996, Como, 1996Google Scholar
  37. 65.
    T.H. Hinke, H.S. Delugach, R.P. Wolf, Protecting databases from inference attacks. Comput. Secur. 16(22), 687–708 (1997)CrossRefGoogle Scholar
  38. 66.
    S. Jajodia, C. Meadows, Inference problems in multilevel secure database management systems, in Information Security: An Integrated Collection of Essays, ed. by M. Abrams, S. Jajodia, H. Podell (IEEE Computer Sociery Press, Los Alamitos, 1995)Google Scholar
  39. 67.
    D. Kifer, A. Machanavajjhala, Pufferfish: A framework for mathematical privacy definitions. ACM TODS 39(1), 3:1–3:36 (2014)Google Scholar
  40. 69.
    K. LeFevre, D.J. DeWitt, R. Ramakrishnan, Incognito: Efficient full-domain k-anonymity, in Proceedings of SIGMOD 2005, Baltimore, 2005Google Scholar
  41. 70.
    K. LeFevre, D.J. DeWitt, R. Ramakrishnan, Mondrian multidimensional k-anonymity, in Proceedings of ICDE 2006, Atlanta, 2006Google Scholar
  42. 71.
    F. Li, J. Sun, S. Papadimitriou, G.A. Mihaila, I. Stanoi, Hiding in the crowd: Privacy preservation on evolving streams through correlation tracking, in Proceedings of ICDE 2007, Istanbul, 2007Google Scholar
  43. 72.
    N. Li, T. Li, S. Venkatasubramanian, t-closeness: privacy beyond k-anonymity and -diversity, in Proceedings of ICDE 2007, Istanbul, 2007Google Scholar
  44. 74.
    T.F. Lunt, Aggregation and inference: facts and fallacies, in Proceedings of S&P 1989, Oakland, 1989Google Scholar
  45. 75.
    A. Machanavajjhala, D. Kifer, J. Gehrke, M. Venkitasubramaniam, -diversity: Privacy beyond k-anonymity. ACM TKDD 1(1), 3:1–3:52 (2007)Google Scholar
  46. 76.
    A. Machanavajjhala, J. Gehrke, M. Götz, Data publishing against realistic adversaries. PVLDB 2(1), 790–801 (2009)Google Scholar
  47. 77.
    D.G. Marks, Inference in mls database systems. IEEE TKDE 8(1), 46–55 (1996)Google Scholar
  48. 78.
    D.G. Marks, A. Motro, S. Jajodia, Enhancing the controlled disclosure of sensitive information. in Proceedings of ESORICS 1996, Rome, 1996Google Scholar
  49. 79.
    D.J. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke, J.Y. Halpern, Worst-case background knowledge for privacy-preserving data publishing, in Proceedings of ICDE 2007, Istanbul, 2007Google Scholar
  50. 81.
    G. Miklau, D. Suciu, Controlling access to published data using cryptography, in Proceedings of VLDB 2003, Berlin, 2003Google Scholar
  51. 83.
    I. Mironov, O. Pandey, O. Reingold, S.P. Vadhan, Computational differential privacy, in Proceedings of CRYPTO 2009, Santa Barbara, 2009Google Scholar
  52. 84.
    M. Morgenstern, Controlling logical inference in multilevel database systems, in Proceedings of S&P 1988, 1988Google Scholar
  53. 86.
    M.E. Nergiz, C. Clifton, A.E. Nergiz, Multirelational k-anonymity, in Proceedings of ICDE 2007, Istanbul, 2007Google Scholar
  54. 89.
    J. Pei, Y. Tao, J. Li, X. Xiao, Privacy preserving publishing on multiple quasi-identifiers, in Proceedings of ICDE 2009, Shanghai, 2009Google Scholar
  55. 91.
    X. Qian, M.E. Stickel, P.D. Karp, T.F. Lunt, T.D. Garvey, Detection and elimination of inference channels in multilevel relational database, in Proceedings of S&P 1993, Oakland, 1993Google Scholar
  56. 92.
    M. Raykova, H. Zhao, and S.M. Bellovin. Privacy enhanced access control for outsourced data sharing, in Proceedings of FC 2012, Bonaire, February-March 2012Google Scholar
  57. 93.
    S. Ruj, M. Stojmenovic, A. Nayak, Privacy preserving access control with authentication for securing data in clouds, in Proceedings of CCGrid 2012, Ottawa, 2012Google Scholar
  58. 94.
    P. Samarati, Protecting respondents’ identities in microdata release. IEEE TKDE 13(6), 1010–1027 (2001)Google Scholar
  59. 96.
    R.S. Sandhu, On some cryptographic solutions for access control in a tree hierarchy, in Proceedings of FJCC 1987, Dallas, 1987Google Scholar
  60. 97.
    R.S. Sandhu, Cryptographic implementation of a tree hierarchy for access control. IPL 27(2), 95–98 (1988)CrossRefGoogle Scholar
  61. 98.
    G.W. Smith, Modeling security-relevant data semantics. IEEE TSE 17(11), 1195–1203 (1991)Google Scholar
  62. 100.
    Y. Tao, J. Pei, J. Li, X. Xiao, K. Yi, Z. Xing, Correlation hiding by independence masking, in Proceedings of ICDE 2010, Long Beach, 2010Google Scholar
  63. 101.
    M. Terrovitis, N. Mamoulis, P. Kalnis, Privacy-preserving anonymization of set-valued data. PVLDB 1(1), 115–125 (2008)Google Scholar
  64. 102.
    M.B. Thuraisingham, Security checking in relational database management systems augmented with inference engines. Comput. Secur. 6(6), 479–492 (1987)CrossRefGoogle Scholar
  65. 106.
    Z. Wan, J. Liu, R.-H. Deng, Hasbe: A hierarchical attribute-based solution for flexible and scalable access control in cloud computing. IEEE TIFS 7(2), 743–754 (2012)Google Scholar
  66. 107.
    K. Wang, B.C.M. Fung, Anonymizing sequential releases, in Proceedings of KDD 2006, Philadelphia, PA, 2006Google Scholar
  67. 108.
    H. Wang, R. Liu, Privacy-preserving publishing data with full functional dependencies. in Proceedings of DASFAA 2010, Tsukuba, 2010Google Scholar
  68. 109.
    K. Wang, Y. Xu, R. Wong, A. Fu, Anonymizing temporal data. in Proceedings of ICDM 2010, Sydney, 2010Google Scholar
  69. 110.
    B. Waters, Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. in Proceedings of PKC 2011, Taormina, 2011Google Scholar
  70. 111.
    X. Xiao, Y. Tao, Anatomy: simple and effective privacy preservation. in Proceedings of VLDB 2006, Seoul, 2006Google Scholar
  71. 112.
    X. Xiao, Y. Tao, Personalized privacy preservation, in Proceedings of SIGMOD 2006, Chicago, 2006Google Scholar
  72. 113.
    X. Xiao, Y. Tao, m-invariance: towards privacy preserving re-publication of dynamic datasets, in Proceedings of SIGMOD 2007, Beijing, 2007Google Scholar
  73. 115.
    K. Yang, X. Jia, K. Ren, Attribute-based fine-grained access control with efficient revocation in cloud storage systems, in Proceedings of ASIACCS 2013, Hangzhou, 2013Google Scholar
  74. 116.
    S. Yu, C. Wang, K. Ren, W. Lou, Achieving secure, scalable, and fine-grained data access control in cloud computing, in Proceedings of INFOCOM 2010, San Diego, CA, 2010Google Scholar
  75. 117.
    F. Zhao, T. Nishide, K. Sakurai, Realizing fine-grained and flexible access control to outsourced data with attribute-based cryptosystems, in Proceedings of ISPEC 2011, Guangzhou, 2011Google Scholar
  76. 118.
    B. Zhou, Y. Han, J. Pei, B. Jiang, Y. Tao, Y. Jia, Continuous privacy preserving publishing of data streams, in Proceedings of EDBT 2009, Saint Petersburg, 2009Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Giovanni Livraga
    • 1
  1. 1.Universita degli Studi di MilanoCremaItaly

Personalised recommendations