Skip to main content

Multifunctional Roles of αB-Crystallin in Skeletal and Cardiac Muscle Homeostasis and Disease

  • Chapter
The Big Book on Small Heat Shock Proteins

Part of the book series: Heat Shock Proteins ((HESP,volume 8))

Abstract

αB-Crystallin, or HspB5, is a small molecular-weight heat shock protein expressed highly in cardiac and skeletal muscle with multifaceted cellular roles including, chaperone function towards essential myofibrillar components. Insights into protective roles played by αB-crystallin, as well as mutations in the gene encoding αB-crystallin, CRYAB, which resulted in human pathologies, have highlighted the critical functions of αB-crystallin in both skeletal and cardiac muscle, inter alia. Various human mutations in CRYAB appear to have tissue-specific effects, with loss of αB-crystallin only impacting skeletal muscle under basal conditions. This review aims to highlight the roles of αB-crystallin in skeletal and cardiac muscle homeostasis as well as under conditions of stress and disease, drawing insights from human pathologies resulting from CRYAB mutations, and to discuss the potential of using induced pluripotent stem cells to model αB-crystallin-opathies in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari AS, Sridhar Rao K, Rangaraj N, Parnaik VK, Mohan Rao C (2004) Heat stress-induced localization of small heat shock proteins in mouse myoblasts: intranuclear lamin A/C speckles as target for alphaB-crystallin and Hsp25. Exp Cell Res 299(2):393–403. doi:10.1016/j.yexcr.2004.05.032

    CAS  PubMed  Google Scholar 

  • Ahmad MF, Raman B, Ramakrishna T, Rao Ch M (2008) Effect of phosphorylation on alpha B-crystallin: differences in stability, subunit exchange and chaperone activity of homo and mixed oligomers of alpha B-crystallin and its phosphorylation-mimicking mutant. J Mol Biol 375(4):1040–1051. doi:10.1016/j.jmb.2007.11.019

    CAS  PubMed  Google Scholar 

  • Amrani N, Sachs MS, Jacobson A (2006) Early nonsense: mRNA decay solves a translational problem. Nat Rev Mol Cell Biol 7(6):415–425. doi:10.1038/nrm1942

    CAS  PubMed  Google Scholar 

  • An MC, Zhang N, Scott G, Montoro D, Wittkop T, Mooney S, Melov S, Ellerby LM (2012) Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 11(2):253–263. doi:10.1016/j.stem.2012.04.026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andley UP, Hamilton PD, Ravi N, Weihl CC (2011) A knock-in mouse model for the R120G mutation of alphaB-crystallin recapitulates human hereditary myopathy and cataracts. PLoS one 6(3):e17671. doi:10.1371/journal.pone.0017671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aquilina JA, Benesch JL, Ding LL, Yaron O, Horwitz J, Robinson CV (2004) Phosphorylation of alphaB-crystallin alters chaperone function through loss of dimeric substructure. J Biol Chem 279(27):28675–28680. doi:10.1074/jbc.M403348200

    CAS  PubMed  Google Scholar 

  • Atomi Y, Yamada S, Nishida T (1991) Early changes of αB-crystallin mRNA in rat skeletal muscle to mechanical tension and denervation. Biochem Biophys Res Commun 181(3):1323–1330

    CAS  PubMed  Google Scholar 

  • Atomi Y, Toro K, Masuda T, Hatta H (2000) Fiber-type-specific aB-crystallin distribution and its shifts with T3 and PTU treatments in rat hindlimb muscles. J Appl Physiol 88:1355–1364

    CAS  PubMed  Google Scholar 

  • Bagneris C, Bateman OA, Naylor CE, Cronin N, Boelens WC, Keep NH, Slingsby C (2009) Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20. J Mol Biol 392(5):1242–1252. doi:10.1016/j.jmb.2009.07.069

    CAS  PubMed  Google Scholar 

  • Basha E, O’Neill H, Vierling E (2012) Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37(3):106–117. doi:10.1016/j.tibs.2011.11.005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennardini F, Wrzosek A, Chiesi M (1992) Alpha B-crystallin in cardiac tissue. Association with actin and desmin filaments. Circ Res 71(2):288–294. doi:10.1161/01.res.71.2.288

    CAS  PubMed  Google Scholar 

  • Best TM, Fiebig R, Corr DT, Brickson S, Ji L (1999) Free radical activity antioxidant enzyme and glutathione changes with muscle stretch injury in rabbits. J Appl Physiol 87:74–82

    CAS  PubMed  Google Scholar 

  • Bloemendal H (1981) The lens proteins. Molecular and cellular biology of the eye lens. Wiley, New York, pp 1–47

    Google Scholar 

  • Boelens WC (2014) Cell biological roles of alphaB-crystallin. Prog Biophys Mol Biol. doi:10.1016/j.pbiomolbio.2014.02.005

    PubMed  Google Scholar 

  • Bova MP, Ding LL, Horwitz J, Fung BKK (1997) Subunit exchange of aA-crystallin. J Biol Chem 272(47):29511–29517

    CAS  PubMed  Google Scholar 

  • Bova MP, Yaron O, Huang Q, Ding L, Haley DA, Stewart PL, Horwitz J (1999) Mutation R120G in aB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function. Proc Natl Acad Sci U S A 96:6137–6142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brady JP, Garland DL, Green DE, Tamm ET, Giblin FJ, Wawrousek EF (2001) aB-crystallin in lens development and muscle integrity: a gene knockout approach. IOVS 42(12):2924–2934

    CAS  Google Scholar 

  • Bruinsma IB, de Jager M, Carrano A, Versleijen AA, Veerhuis R, Boelens W, Rozemuller AJ, de Waal RM, Verbeek MM (2011) Small heat shock proteins induce a cerebral inflammatory reaction. J Neurosci 31(33):11992–12000. doi:10.1523/JNEUROSCI. 0945-11.2011

    CAS  PubMed  Google Scholar 

  • Bullard B, Ferguson C, Minajeva A, Leake MC, Gautel M, Labeit D, Ding L, Labeit S, Horwitz J, Leonard KR, Linke WA (2004) Association of the chaperone alphaB-crystallin with titin in heart muscle. J Biol Chem 279(9):7917–7924. doi:10.1074/jbc.M307473200

    CAS  PubMed  Google Scholar 

  • Carra S, Seguin SJ, Lambert H, Landry J (2008) HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy. J Biol Chem 283(3):1437–1444. doi:10.1074/jbc.M706304200

    CAS  PubMed  Google Scholar 

  • Carra S, Brunsting JF, Lambert H, Landry J, Kampinga HH (2009) HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2{alpha} phosphorylation. J Biol Chem 284(9):5523–5532. doi:10.1074/jbc.M807440200

    CAS  PubMed  Google Scholar 

  • Carvajal-Vergara X, Sevilla A, D’Souza SL, Ang YS, Schaniel C, Lee DF, Yang L, Kaplan AD, Adler ED, Rozov R, Ge Y, Cohen N, Edelmann LJ, Chang B, Waghray A, Su J, Pardo S, Lichtenbelt KD, Tartaglia M, Gelb BD, Lemischka IR (2010) Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465(7299):808–812. doi:10.1038/nature09005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carver JA, Guerreiro N, Nicholls KA, Truscott RJW (1995) On the interaction of a-crystallin with unfolded proteins. Biochem Biophys Acta 1252:251–260

    PubMed  Google Scholar 

  • Chis R, Sharma P, Bousette N, Miyake T, Wilson A, Backx PH, Gramolini AO (2012) Alpha-crystallin B prevents apoptosis after H2O2 exposure in mouse neonatal cardiomyocytes. Am J Physiol Heart Circ Physiol 303:H967–H978. doi:10.1152/ajpheart.00040.2012.-/-Crystallin

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LM, Zou C, Zhang YA, Tong J, Cheng L (2011) Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 21(3):518–529. doi:10.1038/cr.2011.12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christians ES, Yan LJ, Benjamin IJ (2002) Heat shock factor 1 and heat shock proteins: critical partners in protection against acute cell injury. Crit Care Med 30(1):S43–S50

    CAS  Google Scholar 

  • Christians ES, Ishiwata T, Benjamin IJ (2012) Small heat shock proteins in redox metabolism: implications for cardiovascular diseases. Int J Biochem Cell Biol 44(10):1632–1645. doi:10.1016/j.biocel.2012.06.006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christians ES, Banerjee Mustafi S, Benjamin IJ (2014) Chaperones and cardiac misfolding protein diseases. Curr Protein Pept Sci 15(3):189–204

    CAS  PubMed  Google Scholar 

  • Clark AR, Naylor CE, Bagneris C, Keep NH, Slingsby C (2011) Crystal structure of R120G disease mutant of human alphaB-crystallin domain dimer shows closure of a groove. J Mol Biol 408(1):118–134. doi:10.1016/j.jmb.2011.02.020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darabi R, Arpke RW, Irion S, Dimos JT, Grskovic M, Kyba M, Perlingeiro RC (2012) Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10(5):610–619. doi:10.1016/j.stem.2012.02.015

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Jong WW, Caspers GJ, Leunissen JAM (1998) Genealogy of the alpha-crystallin—small heatshock protein superfamily. Int J Biol Macromol 22:151–162

    PubMed  Google Scholar 

  • Del Bigio MR, Chudley AE, Sarnat HB, Campbell C, Goobie S, Chodirker BN, Selcen D (2011) Infantile muscular dystrophy in Canadian aboriginals is an alphaB-crystallinopathy. Ann Neurol 69(5):866–871. doi:10.1002/ana.22331

    PubMed  PubMed Central  Google Scholar 

  • Delbecq SP, Jehle S, Klevit R (2012) Binding determinants of the small heat shock protein, alphaB-crystallin: recognition of the ‘IxI’ motif. EMBO J 31(24):4587–4594. doi:10.1038/emboj.2012.318

    CAS  PubMed  PubMed Central  Google Scholar 

  • den Engelsman J, Keijsers V, de Jong WW, Boelens WC (2003) The small heat-shock protein alpha B-crystallin promotes FBX4-dependent ubiquitination. J Biol Chem 278(7):4699–4704. doi:10.1074/jbc.M211403200

    Google Scholar 

  • den Engelsman J, Gerrits D, de Jong WW, Robbins J, Kato K, Boelens WC (2005) Nuclear import of {alpha}B-crystallin is phosphorylation-dependent and hampered by hyperphosphorylation of the myopathy-related mutant R120G. J Biol Chem 280(44):37139–37148. doi:10.1074/jbc.M504106200

    Google Scholar 

  • Dubin RA, Wawrousek EF, Piatigorsky J (1989) Expression of the murine alpha B-crystallin gene is not restricted to the lens. Mol Cell Biol 9(3):1083–1091. doi:10.1128/mcb.9.3.1083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebert AD, Liang P, Wu JC (2012) Induced pluripotent stem cells as a disease modeling and drug screening platform. J Cardiovasc Pharmacol 60(4):408–416. doi:10.1097/FJC.0b013e318247f642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ecroyd H, Meehan S, Horwitz J, Aquilina JA, Benesch JL, Robinson CV, Macphee CE, Carver JA (2007) Mimicking phosphorylation of alphaB-crystallin affects its chaperone activity. Biochem J 401(1):129–141. doi:10.1042/BJ20060981

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis RJ, van der Vies SM (1991) Molecular chaperones. Annu Rev Biochem 60(1):321–347. doi:10.1146/annurev.bi.60.070191.001541

    CAS  PubMed  Google Scholar 

  • Fardeau M, Godet-Guillain J, Tome FM, Collin H, Gaudeau S, Boffety C, Vernant P (1978) Une nouvelle affection musculaire familiale définie par l’accumulation intra-sarcoplasmique d’un matériel granulofilamentaire dense en microscopie electronique. [A new familial muscular disorder demonstrated by the intra-sarcoplasmic accumulation of a granulo-filamentous material which is dense on electron microscopy (author’s transl)]. Rev Neurol (Paris) 134:411–425

    CAS  Google Scholar 

  • Feil IK, Malfois M, Hendle J, van Der Zandt H, Svergun DI (2001) A novel quaternary structure of the dimeric alpha-crystallin domain with chaperone-like activity. J Biol Chem 276(15):12024–12029. doi:10.1074/jbc.M010856200

    CAS  PubMed  Google Scholar 

  • Fong H, Wang C, Knoferle J, Walker D, Balestra ME, Tong LM, Leung L, Ring KL, Seeley WW, Karydas A, Kshirsagar MA, Boxer AL, Kosik KS, Miller BL, Huang Y (2013) Genetic correction of tauopathy phenotypes in neurons derived from human induced pluripotent stem cells. Stem Cell Rep 1(3):226–234. doi:10.1016/j.stemcr.2013.08.001

    CAS  Google Scholar 

  • Forrest KM, Al-Sarraj S, Sewry C, Buk S, Tan SV, Pitt M, Durward A, McDougall M, Irving M, Hanna MG, Matthews E, Sarkozy A, Hudson J, Barresi R, Bushby K, Jungbluth H, Wraige E (2011) Infantile onset myofibrillar myopathy due to recessive CRYAB mutations. Neuromuscul Disord 21(1):37–40. doi:10.1016/j.nmd.2010.11.003

    PubMed  Google Scholar 

  • Friden J, Lieber RL (2001) Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fibre components. Acta Physiol Scand 171:321–326

    CAS  PubMed  Google Scholar 

  • Garcia-Mata R, Gao Y, Sztul E (2002) Hassles with taking out the garbage: aggravating aggresomes. Traffic 3:388–396

    CAS  PubMed  Google Scholar 

  • Ghosh JG, Estrada MR, Clark JI (2006) Structure-based analysis of the beta8 interactive sequence of human alphaB crystallin. Biochemistry 45:9878–9886

    CAS  PubMed  Google Scholar 

  • Ghosh JG, Houck SA, Clark JI (2007a) Interactive sequences in the stress protein and molecular chaperone human alphaB crystallin recognize and modulate the assembly of filaments. Int J Biochem Cell Biol 39(10):1804–1815. doi:10.1016/j.biocel.2007.04.027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh JG, Shenoy AK, Clark JI (2007b) Interactions between important regulatory proteins and human alphaB crystallin. Biochemistry 46:6308–6317

    CAS  PubMed  Google Scholar 

  • Golenhofen N, Htun P, Ness W, Koob R, Schaper W, Drenckhahn D (1999) Binding of stress protein cryab to cardiac myofibrils correlates with the degree of myocardial damage during I/R in vivo. J Mol Cell Cardiol 31:569–580

    CAS  PubMed  Google Scholar 

  • Golenhofen N, Arbeiter A, Koob R, Drenckhahn D (2002) Ischemia-induced association of the stress protein alpha B-crystallin with I-band portion of cardiac titin. J Mol Cell Cardiol 34(3):309–319. doi:10.1006/jmcc.2001.1513

    CAS  PubMed  Google Scholar 

  • Golenhofen N, Perng MD, Quinlan RA, Drenckhahn D (2004) Comparison of the small heat shock proteins alphaB-crystallin, MKBP, HSP25, HSP20, and cvHSP in heart and skeletal muscle. Histochem Cell Biol 122(5):415–425. doi:10.1007/s00418-004-0711-z

    CAS  PubMed  Google Scholar 

  • Golenhofen N, Redel A, Wawrousek EF, Drenckhahn D (2006) Ischemia-induced increase of stiffness of alphaB-crystallin/HSPB2-deficient myocardium. Pflugers Arch 451(4):518–525. doi:10.1007/s00424-005-1488-1

    CAS  PubMed  Google Scholar 

  • Gopal-Srivastava R, Piatigorsky J (1993) The murine alpha B-crystallin/small heat shock protein enhancer: identification of alpha BE-1, alpha BE-2, alpha BE-3 and MRF control elements. Mol Cell Biol 13(11):7144–7152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gopal-Srivastava R, Haynes JI II, Piatigorsky J (1995) Regulation of the murine aB-crystallin/small heath shock protein gene in cardiac muscle. Mol Cell Biol 15(12):7081–7090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes VH, Devlin G, Quinlan RA (2008) Truncation of alphaB-crystallin by the myopathy-causing Q151X mutation significantly destabilizes the protein leading to aggregate formation in transfected cells. J Biol Chem 283(16):10500–10512. doi:10.1074/jbc.M706453200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hishiya A, Salman MN, Carra S, Kampinga HH, Takayama S (2011) BAG3 directly interacts with mutated alphaB-crystallin to suppress its aggregation and toxicity. PLoS ONE 6(3):e16828. doi:10.1371/journal.pone.0016828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horwitz J (1992) a-Crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A 89:10449–10453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hosoyama T, McGivern JV, Van Dyke JM, Ebert AD, Suzuki M (2014) Derivation of myogenic progenitors directly from human pluripotent stem cells using a sphere-based culture. Stem Cells Transl Med. doi:10.5966/sctm.2013-0143

    PubMed  PubMed Central  Google Scholar 

  • Houck SA, Landsbury A, Clark JI, Quinlan RA (2011) Multiple sites in alphaB-crystallin modulate its interaction with desmin filaments assembled in vitro. PLoS ONE 6(11):e25859. doi:10.1371/journal.pone.0025859.g001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu WF, Gong L, Cao Z, Ma H, Ji W, Deng M, Liu M, Hu XH, Chen P, Yan Q, Chen HG, Liu J, Sun S, Zhang L, Liu JP, Wawrousek E, Li DW (2012) αA- and αB-crystallins interact with caspase-3 and Bax to guard mouse lens development. Curr Mol Med 12(2):177–187

    CAS  PubMed  Google Scholar 

  • Ignolia TD, Craig EA (1982) Four small Drosophila heat shock proteins are related to each other and to mammalian alpha crystallin. Proc Natl Acad Sci U S A 79:2360–2364

    Google Scholar 

  • Inagaki N, Hayashi T, Arimura T, Koga Y, Takahashi M, Shibata H, Teraoka K, Chikamori T, Yamashina A, Kimura A (2006) Alpha B-crystallin mutation in dilated cardiomyopathy. Biochem Biophys Res Commun 342(2):379–386. doi:10.1016/j.bbrc.2006.01.154

    CAS  PubMed  Google Scholar 

  • Ishiwata T, Orosz A, Wang X, Mustafi SB, Pratt GW, Christians ES, Boudina S, Abel ED, Benjamin IJ (2012) HSPB2 is dispensable for the cardiac hypertrophic response but reduces mitochondrial energetics following pressure overload in mice. PLoS one 7(8):e42118. doi:10.1371/journal.pone.0042118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito H, Okamoto K, Nakayama H, Isobe T, Kato K (1997) Phosphorylation of alphaB-crystallin in response to various types of stress. J Biol Chem 272:29934–29941

    CAS  PubMed  Google Scholar 

  • Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulos M, Gepstein L (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471(7337):225–229. doi:10.1038/nature09747

    CAS  PubMed  Google Scholar 

  • Iwaki T, Kume-Iwaki A, Goldman JE (1990) Cellular distribution of alpha B-crystallin in non-lenticular tissues. J Histochem Cytochem 38(1):31–39. doi:10.1177/38.1.2294148

    CAS  PubMed  Google Scholar 

  • Jansen G, Groenen PJTA, Bachner D, Jap PHK, Coerwinkel M, Oerlemans F, van den Broek W, Gohlsch B, Pette D, Plomp JJ, Molenaar PC, Nederhoff MGJ, van Echteld CJA, Dekker M, Berns A, Hameister H, Wieringa B (1996) Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nat Genet 13:316–324

    CAS  PubMed  Google Scholar 

  • Jehle S, Rajagopal P, Bardiaux B, Markovic S, Kuhne R, Stout JR, Higman VA, Klevit RE, van Rossum BJ, Oschkinat H (2010) Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. Nat Struct Mol Biol 17(9):1037–1042. doi:10.1038/nsmb.1891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamradt MC, Chen F, Cryns VL (2001) The small heat shock protein alpha B-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. J Biol Chem 276(19):16059–16063. doi:10.1074/jbc.C100107200

    CAS  PubMed  Google Scholar 

  • Kamradt MC, Chen F, Sam S, Cryns VL (2002) The small heat shock protein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. J Biol Chem 277(41):38731–38736. doi:10.1074/jbc.M201770200

    CAS  PubMed  Google Scholar 

  • Kappé G, Leunissen JM, Jong W (2002) Evolution and diversity of prokaryotic small heat shock proteins. In: Arrigo A-P, Müller WEG (eds) Small stress proteins, vol 28, Progress in molecular and subcellular biology. Springer, Berlin/Heidelberg, pp 1–17. doi:10.1007/978-3-642-56348-5_1

    Google Scholar 

  • Kato K, Ito H, Kamei K, Inaguma Y, Iwamoto I, Saga S (1998) Phosphorylation of αB-crystallin in mitotic cells and identification of enzymatic activities responsible for phosphorylation. J Biol Chem 273:28346–28354

    CAS  PubMed  Google Scholar 

  • Koh TJ (2002) Do small heat shock proteins protect skeletal muscle from injury. Exerc Sports Sci Rev 30(3):117–121

    Google Scholar 

  • Koh TJ, Escobedo J (2004) Cytoskeletal disruption and small heat shock protein translocation immediately after lengthening contractions. Am J Physiol Cell Physiol 286(3):C713–C722. doi:10.1152/ajpcell.00341.2003

    CAS  PubMed  Google Scholar 

  • Komulainen J, Takala TES, Kuipers H, Hesselink MKC (1998) The disruption of myofibre structures in rat skeletal muscle after forced lengthening contractions. Eur J Physiol 436:735–741

    CAS  Google Scholar 

  • Kostek MC, Chen YW, Cuthbertson DJ, Shi R, Fedele MJ, Esser KA, Rennie MJ (2007) Gene expression responses over 24 h to lengthening and shortening contractions in human muscle: major changes in CSRP3, MUSTN1, SIX1, and FBXO32. Physiol Genomics 31:42–52. doi:10.1152/physiolgenomics.00151.2006.-Resistance

    CAS  PubMed  Google Scholar 

  • Kotter S, Unger A, Hamdani N, Lang P, Vorgerd M, Nagel-Steger L, Linke WA (2014) Human myocytes are protected from titin aggregation-induced stiffening by small heat shock proteins. J Cell Biol 204(2):187–202. doi:10.1083/jcb.201306077

    PubMed  PubMed Central  Google Scholar 

  • Krishnamoorthy V, Donofrio AJ, Martin JL (2013) O-GlcNAcylation of alphaB-crystallin regulates its stress-induced translocation and cytoprotection. Mol Cell Biochem 379(1–2):59–68. doi:10.1007/s11010-013-1627-5

    CAS  PubMed  Google Scholar 

  • Kumarapeli AR, Su H, Huang W, Tang M, Zheng H, Horak KM, Li M, Wang X (2008) Alpha B-crystallin suppresses pressure overload cardiac hypertrophy. Circ Res 103(12):1473–1482. doi:10.1161/CIRCRESAHA.108.180117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Labeit S, Kolmerer B (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296

    CAS  PubMed  Google Scholar 

  • Laganowsky A, Benesch JL, Landau M, Ding L, Sawaya MR, Cascio D, Huang Q, Robinson CV, Horwitz J, Eisenberg D (2010) Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 19(5):1031–1043. doi:10.1002/pro.380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Grand F, Rudnicki MA (2007) Skeletal muscle satellite cells and adult myogenesis. Curr Opin Cell Biol 19(6):628–633. doi:10.1016/j.ceb.2007.09.012

    PubMed  PubMed Central  Google Scholar 

  • Li DW, Liu JP, Mao YW, Xiang H, Wang J, Ma WY, Dong Z, Pike HM, Brown RE, Reed JC (2005) Calcium-activated RAF/MEK/ERK signaling pathway mediates p53-dependent apoptosis and is abrogated by alpha B-crystallin through inhibition of RAS activation. Mol Biol Cell 16(9):4437–4453. doi:10.1091/mbc.E05-01-0010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, Hsiao C, Kamp TJ, Palecek SP (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc 8(1):162–175. doi:10.1038/nprot.2012.150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang P, MacRae TH (1997) Molecular chaperones and the cytoskeleton. J Cell Sci 110:1431–1440

    CAS  PubMed  Google Scholar 

  • Limphong P, Zhang H, Christians E, Liu Q, Riedel M, Ivey K, Cheng P, Mitzelfelt K, Taylor G, Winge D, Srivastava D, Benjamin I (2013) Modeling human protein aggregation cardiomyopathy using murine induced pluripotent stem cells. Stem Cells Transl Med 2(3):161–166. doi:10.5966/sctm. 2012-0073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linke WA (2008) Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc Res 77(4):637–648. doi:10.1016/j.cardiores.2007.03.029

    CAS  PubMed  Google Scholar 

  • Liu JP, Schlosser R, Ma WY, Dong Z, Feng H, Liu L, Huang XQ, Liu Y, Li DW (2004) Human alphaA- and alphaB-crystallins prevent UVA-induced apoptosis through regulation of PKCalpha, RAF/MEK/ERK and AKT signaling pathways. Exp Eye Res 79(3):393–403. doi:10.1016/j.exer.2004.06.015

    CAS  Google Scholar 

  • Liu S, Li J, Tao Y, Xiao X (2007) Small heat shock protein alphaB-crystallin binds to p53 to sequester its translocation to mitochondria during hydrogen peroxide-induced apoptosis. Biochem Biophys Res Commun 354(1):109–114. doi:10.1016/j.bbrc.2006.12.152

    CAS  PubMed  Google Scholar 

  • Lockard VG, Bloom S (1993) Trans-cellular desmin-lamin B intermediate filament network in cardiac myocytes. J Mol Cell Cardiol 25:303–309

    CAS  PubMed  Google Scholar 

  • Lutsch G, Vetter R, Offhauss U, Wieske M, Gröne H-J, Klemenz R, Schimke I, Stahl J, Benndorf R (1997) Abundance and location of the small heat shock proteins HSP25 and αB-crystallin in rat and human heart. Circulation 96:3466–3476

    CAS  PubMed  Google Scholar 

  • Maloyan A, Sanbe A, Osinska H, Westfall M, Robinson D, Imahashi K, Murphy E, Robbins J (2005) Mitochondrial dysfunction and apoptosis underlie the pathogenic process in alpha-B-crystallin desmin-related cardiomyopathy. Circulation 112(22):3451–3461. doi:10.1161/CIRCULATIONAHA.105.572552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maloyan A, Gulick J, Glabe CG, Kayed R, Robbins J (2007) Exercise reverses preamyloid oligomer and prolongs survival in alphaB-crystallin-based desmin-related cardiomyopathy. Proc Natl Acad Sci U S A 104(14):5995–6000. doi:10.1073/pnas.0609202104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maloyan A, Osinska H, Lammerding J, Lee RT, Cingolani OH, Kass DA, Lorenz JN, Robbins J (2009) Biochemical and mechanical dysfunction in a mouse model of desmin-related myopathy. Circ Res 104(8):1021–1028. doi:10.1161/CIRCRESAHA.108.193516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mao YW, Liu JP, Xiang H, Li DW (2004) Human alphaA- and alphaB-crystallins bind to Bax and Bcl-X(S) to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ 11(5):512–526. doi:10.1038/sj.cdd.4401384

    CAS  PubMed  Google Scholar 

  • Martin JL, Mestril R, Hilal-Dandan R, Brunton LL, Dillmann WH (1997) Small heat shock proteins and protection against ischemic injury in cardiac myocytes. Circulation 96:4343–4348

    CAS  PubMed  Google Scholar 

  • Melkani GC, Cammarato A, Bernstein SI (2006) AlphaB-crystallin maintains skeletal muscle myosin enzymatic activity and prevents its aggregation under heat-shock stress. J Mol Biol 358(3):635–645. doi:10.1016/j.jmb.2006.02.043

    CAS  PubMed  Google Scholar 

  • Mercola M, Ruiz-Lozano P, Schneider MD (2011) Cardiac muscle regeneration: lessons from development. Genes Dev 25(4):299–309. doi:10.1101/gad.2018411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milner D, Mavroidis M, Weisleder N, Capetanaki Y (2000) Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol 150(6):1283–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minajeva A, Kulke M, Fernandez JM, Linke WA (2001) Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils. Biophys J 80:1442–1451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitra A, Basak T, Datta K, Naskar S, Sengupta S, Sarkar S (2013) Role of alpha-crystallin B as a regulatory switch in modulating cardiomyocyte apoptosis by mitochondria or endoplasmic reticulum during cardiac hypertrophy and myocardial infarction. Cell Death Dis 4:e582. doi:10.1038/cddis.2013.114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12(24):3788–3796. doi:10.1101/gad.12.24.3788

    CAS  PubMed  Google Scholar 

  • Morner CT (1894) Untersuchung der Proteinsubstanzen in den lichtbrechenden Medien des Auges (Examination of the protein-substances in the refractory media of the eye). Hoppe Seyler’s Z Physiol Chem 18(61):106

    Google Scholar 

  • Morrison LE, Hoover HE, Thuerauf DJ, Glembotski CC (2003) Mimicking phosphorylation of alphaB-crystallin on serine-59 is necessary and sufficient to provide maximal protection of cardiac myocytes from apoptosis. Circ Res 92(2):203–211. doi:10.1161/01.res.0000052989.83995.a5

    CAS  PubMed  Google Scholar 

  • Morrison LE, Whittaker RJ, Klepper RE, Wawrousek EF, Glembotski CC (2004) Roles for αB-crystallin and HSPB2 in protecting the myocardium from ischemia-reperfusion-induced damage in a KO mouse model. Am J Physiol Heart Circ Physiol 286:H847–H855

    CAS  PubMed  Google Scholar 

  • Mymrikov EV, Seit-Nebi AS, Gusev NB (2011) Large potentials of small heat shock proteins. Physiol Rev 91:1123–1159. doi:10.1152/physrev.00023.2010.-Modern

    CAS  PubMed  Google Scholar 

  • Neppl RL, Kataoka M, Wang DZ (2014) Crystallin-alphaB regulates skeletal muscle homeostasis via modulation of argonaute2 activity. J Biol Chem 289(24):17240–17248. doi:10.1074/jbc.M114.549584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neufer PD, Benjamin IJ (1996) Differential expression of alpha B-crystallin and Hsp27 in skeletal muscle during continuous contractile activity. Relationship to myogenic regulatory factors. J Biol Chem 271(39):24089–24095. doi:10.1074/jbc.271.39.24089

    CAS  PubMed  Google Scholar 

  • Ogata T, Yamaksak Y (1997) Ultra-high-resolution scanning electron microscopy of mitochondria and sarcoplasmic reticulum arrangement in human red, white, and intermediate muscle fibers. Anat Rec 248:214–223

    CAS  PubMed  Google Scholar 

  • Paulsen G, Vissing K, Kalhovde JM, Ugelstad I, Bayer ML, Kadi F, Schjerling P, Hallen J, Raastad T (2007) Maximal eccentric exercise induces a rapid accumulation of small heat shock proteins on myofibrils and a delayed HSP70 response in humans. Am J Physiol Regul Integr Comp Physiol 293:R844–R853. doi:10.1152/ajpregu.00677.2006.-In

    CAS  PubMed  Google Scholar 

  • Perng MD, Cairns L, Vandenijssel P, Prescott A, Hutcheson AM, Quinlan RA (1999a) Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J Cell Sci 112:2099–2112

    CAS  PubMed  Google Scholar 

  • Perng MD, Muchowski PJ, Vandenijssel P, Wu JS, Hutcheson AM, Clark JI, Quinlan RA (1999b) The cardiomyopathy and lens cataract mutation in alphaB-crystalln alters its protein structure, chaperone activity, and interaction with intermediate filaments in vitro. J Biol Chem 274:33235–33243

    CAS  PubMed  Google Scholar 

  • Perng MD, Wen SF, van den IP, Prescott AR, Quinlan RA (2004) Desmin aggregate formation by R120G alphaB-crystallin is caused by altered filament interactions and is dependent upon network status in cells. Mol Biol Cell 15(5):2335–2346. doi:10.1091/mbc.E03-12-0893

    CAS  PubMed  Google Scholar 

  • Peschek J, Braun N, Rohrberg J, Back KC, Kriehuber T, Kastenmüller A, Weinkauf S, Buchner J (2013) Regulated structural transitions unleash the chaperone activity of alphaB-crystallin. Proc Natl Acad Sci U S A 110(40):E3780–E3789

    Google Scholar 

  • Pilotto A, Marziliano N, Pasotti M, Grasso M, Costante AM, Arbustini E (2006) AlphaB-crystallin mutation in dilated cardiomyopathies: low prevalence in a consecutive series of 200 unrelated probands. Biochem Biophys Res Commun 346(4):1115–1117. doi:10.1016/j.bbrc.2006.05.203

    CAS  PubMed  Google Scholar 

  • Pinz I, Robbins J, Rajasekaran NS, Benjamin IJ, Ingwall JS (2008) Unmasking different mechanical and energetic roles for the small heat shock proteins CryAB and HSPB2 using genetically modified mouse hearts. FASEB J 22(1):84–92. doi:10.1096/fj.07-8130com

    CAS  PubMed  Google Scholar 

  • Plater ML, Goode D, Crabbe MJC (1996) Effects of site-directed mutations on the chaperone-like activity of alphaB-crystallin. J Biol Chem 271(45):28558–28566

    CAS  PubMed  Google Scholar 

  • Rajaraman K, Raman B, Ramakrishna T, Rao Ch M (2001) Interaction of human recombinant alphaA- and alphaB-crystallins with early and late unfolding intermediates of citrate synthase on its thermal denaturation. FEBS Lett 497:118–123

    CAS  PubMed  Google Scholar 

  • Rajasekaran NS, Connell P, Christians ES, Yan LJ, Taylor RP, Orosz A, Zhang XQ, Stevenson TJ, Peshock RM, Leopold JA, Barry WH, Loscalzo J, Odelberg SJ, Benjamin IJ (2007) Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell 130(3):427–439. doi:10.1016/j.cell.2007.06.044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raju I, Abraham EC (2013) Mutants of human alphaB-crystallin cause enhanced protein aggregation and apoptosis in mammalian cells: influence of co-expression of HspB1. Biochem Biophys Res Commun 430(1):107–112. doi:10.1016/j.bbrc.2012.11.051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rambourg A, Segretain D (1980) Three-dimensional electron microscopy of mitochondria and endoplasmic reticulum in the red muscle fiber of the rat diaphragm. Anat Rec 197(1):33–48

    CAS  PubMed  Google Scholar 

  • Rappaport L, Contard F, Samuel JL, Delcayre C, Marotte F, Tome F, Fardeau M (1988) Storage of phosphorylated desmin in a familial myopathy. FEBS Lett 231(2):421–425

    CAS  PubMed  Google Scholar 

  • Rappaport L, Oliviero P, Samuel JL (1998) Cytoskeleton and mitochondrial morphology and function. Mol Cell Biochem 184:101–105

    CAS  PubMed  Google Scholar 

  • Ray PS, Martin JL, Swanson EA, Otani H, Dillmann WH, Das DK (2001) Transgene overexpression of aB crystallin confers simultaneous protection against cardiomyocyte apoptosis and necrosis during myocardial ischemia and reperfusion. FASEB J 15:393–402

    CAS  PubMed  Google Scholar 

  • Reddy S, Smith DBJ, Rich MM, Leferovich JM, Reilly P, Davis BM, Tran K, Rayburn H, Bronson R, Cros D, Balice-Gordon RJ, Housman D (1996) Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nat Genet 13:325–335

    CAS  PubMed  Google Scholar 

  • Reilich P, Schoser B, Schramm N, Krause S, Schessl J, Kress W, Muller-Hocker J, Walter MC, Lochmuller H (2010) The p.G154S mutation of the alpha-B crystallin gene (CRYAB) causes late-onset distal myopathy. Neuromuscul Disord 20(4):255–259. doi:10.1016/j.nmd.2010.01.012

    PubMed  Google Scholar 

  • Reipert S, Steinbock F, Fischer I, Bittner RE, Zeold A, Wiche G (1999) Association of mitochondria with plectin and desmin intermediate filaments in striated muscle. Exp Cell Res 252:479–491

    CAS  PubMed  Google Scholar 

  • Rief M (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315):1109–1112. doi:10.1126/science.276.5315.1109

    CAS  PubMed  Google Scholar 

  • Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481(7381):295–305. doi:10.1038/nature10761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sacconi S, Feasson L, Antoine JC, Pecheux C, Bernard R, Cobo AM, Casarin A, Salviati L, Desnuelle C, Urtizberea A (2012) A novel CRYAB mutation resulting in multisystemic disease. Neuromuscul Dis 22(1):66–72. doi:10.1016/j.nmd.2011.07.004

    Google Scholar 

  • Sanbe A, Osinska H, Saffitz JE, Glabe CG, Kayed R, Maloyan A, Robbins J (2004) Desmin-related cardiomyopathy in transgenic mice: a cardiac amyloidosis. Proc Natl Acad Sci U S A 101(27):10132–10136. doi:10.1073/pnas.0401900101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanbe A, Yamauchi J, Miyamoto Y, Fujiwara Y, Murabe M, Tanoue A (2007) Interruption of CryAB-amyloid oligomer formation by HSP22. J Biol Chem 282(1):555–563. doi:10.1074/jbc.M605481200

    CAS  PubMed  Google Scholar 

  • Sanbe A, Daicho T, Mizutani R, Endo T, Miyauchi N, Yamauchi J, Tanonaka K, Glabe C, Tanoue A (2009) Protective effect of geranylgeranylacetone via enhancement of HSPB8 induction in desmin-related cardiomyopathy. PLoS one 4(4):e5351. doi:10.1371/journal.pone.0005351

    PubMed  PubMed Central  Google Scholar 

  • Sanbe A, Marunouchi T, Yamauchi J, Tanonaka K, Nishigori H, Tanoue A (2011) Cardioprotective effect of nicorandil, a mitochondrial ATP-sensitive potassium channel opener, prolongs survival in HSPB5 R120G transgenic mice. PLoS one 6(4):e18922. doi:10.1371/journal.pone.0018922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selcen D (2011) Myofibrillar myopathies. Neuromuscular Dis NMD 21(3):161–171. doi:10.1016/j.nmd.2010.12.007

    Google Scholar 

  • Selcen D, Engel AG (2003) Myofibrillar myopathy caused by novel dominant negative cryAB mutations. Ann Neurol 54(6):804–810

    CAS  PubMed  Google Scholar 

  • Singh BN, Rao KS, Rao Ch M (2010) Ubiquitin-proteasome-mediated degradation and synthesis of MyoD is modulated by alphaB-crystallin, a small heat shock protein, during muscle differentiation. Biochim Biophys Acta 1803(2):288–299. doi:10.1016/j.bbamcr.2009.11.009

    CAS  PubMed  Google Scholar 

  • Smirnova E, Chebotareva N, Gurvits B (2013) Transient transformation of oligomeric structure of alpha-crystallin during its chaperone action. Int J Biol Macromol 55:62–68. doi:10.1016/j.ijbiomac.2012.12.013

    CAS  PubMed  Google Scholar 

  • Spector DL, Lamond AI (2011) Nuclear speckles. Cold Spring Harb Perspect Biol 3(2):1–12. a000646. doi:10.1101/cshperspect.a000646

  • Suzuki A, Sugiyama Y, Hayashi Y, Nyu-i N, Yoshida M, Nonaka I, Ishiura S, Arahata K, Ohno S (1998) MKBP, a novel member of the small heat shock protein family, binds and activates the myotonic dystrophy protein kinase. J Cell Biol 140:1113–1124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, Yamanaka (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    CAS  PubMed  Google Scholar 

  • Tannous P, Zhu H, Johnstone JL, Shelton JM, Rajasekaran NS, Benjamin IJ, Nguyen L, Gerard RD, Levine B, Rothermel BA, Hill JA (2008) Autophagy is an adaptive response in desmin-related cardiomyopathy. Proc Natl Acad Sci U S A 105(28):9745–9750. doi:10.1073/pnas.0706802105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor RP, Benjamin IJ (2005) Small heat shock proteins: a new classification scheme in mammals. J Mol Cell Cardiol 38(3):433–444. doi:10.1016/j.yjmcc.2004.12.014

    CAS  PubMed  Google Scholar 

  • Thompson HS, Scordilis SP, Clarkson PM, Lohrer WA (2001) A single bout of eccentric exercise increases Hsp27 and HSC/HSP70 in human skeletal muscle. Acta Physiol Scand 171:187–193

    CAS  PubMed  Google Scholar 

  • Vandenijssel P, Wheelock R, Prescott A, Russell P, Quinlan R (2003) Nuclear speckle localisation of the small heat shock protein alphaB-crystallin and its inhibition by the R120G cardiomyopathy-linked mutation. Exp Cell Res 287(2):249–261. doi:10.1016/s0014-4827(03)00092-2

    CAS  Google Scholar 

  • Vicart CA, Guicheney P, Li Z, Prévost MC, Faure A, Chateau D, Chapon F, Tomé F, Dupret JM, Paulin D, Fardeau M (1998) A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet 20(1):92–95

    CAS  PubMed  Google Scholar 

  • Wang X, Osinska H, Klevitsky R, Gerdes AM, Nieman M, Lorenz J, Hewett T, Robbins J (2001) Expression of R120G- B-crystallin causes aberrant desmin and B-crystallin aggregation and cardiomyopathy in mice. Circ Res 89(1):84–91. doi:10.1161/hh1301.092688

    CAS  PubMed  Google Scholar 

  • Watanabe G, Kato S, Nakata H, Ishida T, Ohuchi N, Ishioka C (2009) alphaB-crystallin: a novel p53-target gene required for p53-dependent apoptosis. Cancer Sci 100(12):2368–2375. doi:10.1111/j.1349-7006.2009.01316.x

    CAS  PubMed  Google Scholar 

  • Weintraub H (1993) The MyoD family and myogenesis- redundancy, networks, and thresholds. Cell 75:1241–1244

    CAS  PubMed  Google Scholar 

  • Whittaker R, Gude GN, Sussman MA, Gottlieb RA, Glembotski CC (2009) Kinetics of the translocation and phosphorylation of alphaB-crystallin in mouse heart mitochondria during ex vivo ischemia. Am J Physiol Heart Circ Physiol 296:H1633–H1642. doi:10.1152/ajpheart.01227.2008.-/Bcrystallin

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan LJ, Christians EC, Liu L, Xiao X, Sohal RS, Benjamin IJ (2002) Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 21(19):5164–5172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, Miranda E, Ordonez A, Hannan NR, Rouhani FJ, Darche S, Alexander G, Marciniak SJ, Fusaki N, Hasegawa M, Holmes MC, Di Santo JP, Lomas DA, Bradley A, Vallier L (2011) Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478(7369):391–394. doi:10.1038/nature10424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Rajasekaran NS, Orosz A, Xiao X, Rechsteiner M, Benjamin IJ (2010) Selective degradation of aggregate-prone CryAB mutants by HSPB1 is mediated by ubiquitin-proteasome pathways. J Mol Cell Cardiol 49(6):918–930. doi:10.1016/j.yjmcc.2010.09.004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Klos M, Wilson GF, Herman AM, Lian X, Raval KK, Barron MR, Hou L, Soerens AG, Yu J, Palecek SP, Lyons GE, Thomson JA, Herron TJ, Jalife J, Kamp TJ (2012) Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res 111(9):1125–1136. doi:10.1161/CIRCRESAHA.112.273144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, Wang Y, Zhang Y, Zhuang Q, Li Y, Bao X, Tse HF, Grillari J, Grillari-Voglauer R, Pei D, Esteban MA (2012) Generation of human induced pluripotent stem cells from urine samples. Nat Protoc 7(12):2080–2089. doi:10.1038/nprot.2012.115

    CAS  PubMed  Google Scholar 

  • Zhu Y, Bogomolovas J, Labeit S, Granzier H (2009) Single molecule force spectroscopy of the cardiac titin N2B element: effects of the molecular chaperone alphaB-crystallin with disease-causing mutations. J Biol Chem 284(20):13914–13923. doi:10.1074/jbc.M809743200

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Lindsey Barber provided excellent editorial assistance during preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivor J. Benjamin M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mitzelfelt, K.A., Benjamin, I.J. (2015). Multifunctional Roles of αB-Crystallin in Skeletal and Cardiac Muscle Homeostasis and Disease. In: Tanguay, R., Hightower, L. (eds) The Big Book on Small Heat Shock Proteins. Heat Shock Proteins, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-16077-1_11

Download citation

Publish with us

Policies and ethics